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Abstract Bacterial quorum sensing (QS) systems

are cell density—dependent regulatory networks that
coordinate bacterial behavioural changes from single

cellular organisms at low cell densities to multicellular

types when their population density reaches a thresh-
old level. At this stage, bacteria produce and perceive

small diffusible signal molecules, termed autoinducers
in order to mediate gene expression. This often results

in phenotypic shifts, like planktonic to biofilm or non-

virulent to virulent. In this way, they regulate varied
physiological processes by adjusting gene expression

in concert with their population size. In this review we

give a synopsis of QS mediated cell–cell communi-
cation in bacteria. The first part focuses on QS circuits

of some Gram-negative and Gram-positive bacteria.

Thereafter, attention is drawn on the recent applica-
tions of QS in development of synthetic biology

modules, for studying the principles of pattern forma-

tion, engineering bi-directional communication sys-
tem and building artificial communication networks.

Further, the role of QS in solving the problem of

biofouling is also discussed.
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Introduction

Bacteria are small unicellular prokaryotic organisms

that neither have membrane bound nucleus nor

membrane enclosed organelles, yet, they have the
ability to communicate with one another using differ-

ent chemical languages. Bacteria release, detect and

respond to the accumulation of self generated chem-
ical signaling molecules called autoinducers (AIs),

whose concentration correlates to the abundance of

secreting microorganisms in the vicinity. When the
signal concentration reaches a threshold, the commu-

nicating microorganisms undertake a coordinated

change in their gene-expression profiles (Turovskiy
et al. 2007; Jayaraman and Wood 2008; Popat et al.

2008). The regulated gene expression enables them to

act in unison as enormous multicellular organisms.
This chemical communication, called as ‘quorum

sensing’ (QS) is defined as a density dependent
mechanism by which bacteria coordinate expression

of specific target genes in response to a critical

concentration of signal molecules (Pappas et al. 2004;
Novick and Geisinger 2008; Antunes and Ferreira

2009; Ng and Bassler 2009; Williams and Camara

2009; Antunes et al. 2010; Ng et al. 2011). With this
mechanism, they initiate complex activities such as
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control of secondary metabolism, root nodulation,
bioluminescence, protein secretion, motility, viru-

lence factor production, plasmid transfer, and biofilm

maturation in diverse bacteria (Fuqua and Greenberg
2002; Bassler and Losick 2006; Williams 2007). QS

plays a critical role in both pathogenic and symbiotic

bacteria-host interactions. QS is beneficial in patho-
gens, because virulence factors are released and

coordinated attack on the host made only when the

bacterial population reaches a high density. With this
coordinated activity, bacteria besiege the host

defenses and enhance their survival prospects. Simi-

larly for symbiotic bacteria, QS allows bacteria to
synchronize important cellular responses with the host

(e.g. bioluminescence and root nodulation), that

facilitates their mutual existence (Thoendel and Hor-
swill 2010). Moreover, it has been proposed that AI

molecules allow cells to assess whether the production

of exofactors will be directly beneficial to the cell that
produces them, in response to the rate of diffusion in

the surrounding environment. This idea, termed as

diffusion sensing suggests that QS need not be a social
behavior but could rather be a nonsocial trait (Redfield

2002; Hense et al. 2007; Venturi and Subramoni 2009;

West et al. 2012). Gram negative and Gram positive
bacteria have different QS systems, with LuxIR

circuits in Gram-negative bacteria and oligopeptide

two-component circuits in Gram-positive bacteria.
Gram-negative bacteria synthesize primarily N-acyl-

homoserine lactones (AHLs), whereas Gram-positive

bacteria most commonly use modified peptides as
signal molecules. Both Gram-positive and Gram-

negative bacteria produce AI-2 family molecules

which are derived from the precursor 4,5-dihydroxy-
2,3-pentanedione (DPD) produced by the LuxS syn-

thase (Ryan and Dow 2008).

Some functions controlled by LuxIR-type QS
include the production of antibiotics in Erwinia

carotovora, virulence gene expression and biofilm

formation in Pseudomonas aeruginosa and expression
of factors necessary for symbiosis in Sinorhizobium

meliloti (de Kievit and Iglewski 2000). Notable
examples of behaviors controlled by oligopeptide

two-component circuits in Gram-positive bacteria

include regulation of the expression of virulence and
other accessory genes in staphylococci and regulation

of sporulation and genetic competence in Bacillus

subtilis regulated with a series of linear peptides
(Thoendel et al. 2011).

QS circuits

Gram negative proteobacteria (a, b and c subdivi-
sions) use acyl-HSL communication system to control

specific genes in response to population density. QS in

these bacteria is an RI-sensory system consisting of
I-genes (homologs of luxI), encoding a signal synthase

protein and R-genes (homologs of luxR), encoding a

LuxR-like protein, which interacts with its specific
signal molecule. AHL is the most common class of AI

used by Gram-negative bacteria (Wei et al. 2006).

LuxI-type AHL synthases catalyze the formation of a
specific AHL from the substrates S-adenosyl-L-methi-

onine (SAM), an intermediate of the methione/home-

cysteine pathway and acyl-acyl carrier protein (acyl-
ACP), generated as an intermediate in fatty-acid

biosynthesis (Marketon et al. 2002; Dessaux et al.

2011). The amphipathic character of AHL molecules,
due to the presence of hydrophobic side chain and the

hydrophilic HSL ring, allows the AHLs to traverse the

phospholipid bilayer of cell membrane and navigate
the aqueous intracellular and extracellular environ-

ments (Fuqua et al. 2001). As the cell population

density increases, AHL autoinducer concentration
also increases. When the concentration of AHL

eventually reaches a sufficiently high concentration

at a given threshold cell number or bacterial quorum,
several DNA-binding transcription factors called R

proteins, such as LuxR or LasR recognize and bind

specific AHL autoinducers. The LuxR/AHL complex
activates or represses multiple target genes, including

those coding for the AHL synthase (usually a member

of the LuxI protein family), giving rise to a positive
auto induction circuit (Whitehead et al. 2001; Zhang

et al. 2002; Urbanowski et al. 2004; Bjarnsholt and

Givskov 2007).
QS was first described in a study carried out in the

early 1970s on bioluminescence phenomenon found in

Vibrio fischeri, a marine bacterium associated with
Hawaiian squid (Nealson et al. 1970). Biolumines-

cence in V. fischeri is generated by the lux operon

luxICDABEG, which encodes bacterial luciferase
enzyme as well as the enzymes for production of

luciferase substrate, and is regulated by QS channels

(Pérez and Hagen 2010; Pérez-Montaño et al. 2011).
QS system of V. fischeri employs N-3-oxo-hexanoyl

homoserine lactone (3-oxo-C6-HSL) as a QS signal-

ing molecule. This bioluminescence gene cluster of V.
fischeri consists of eight lux genes (luxA-E, luxG, luxI
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and luxR) which are arranged in two bi-directionally
transcribed operons. LuxI catalyzes acylation and

lactonization reactions between the substrates SAM

and hexanoyl-ACP to synthesize 3-oxo-C6-HSL, 50-
methylthioadenosine and apo-ACP (Miyashiro and

Ruby 2012). Following synthesis, 3-oxo-C6-HSL

diffuses freely in and out of the cell, and its concen-
tration increases as the cell density of the population

increases. When 3-oxo-C6-HSL accumulates to suffi-

ciently high concentration, it is bound by a *25 kDa
cytoplasmic receptor LuxR (Hanzelka and Greenberg

1995; Fuqua and Greenberg 2002). The LuxR/3-oxo-

C6-HSL complex acts as transcriptional activator and
binds to a 20 bp sequence within the luxR–luxI

intergenic region referred to as the ‘lux box’ (Stevens

et al. 1994), 42.5 bp upstream of the luxI promoter
start site and activates expression of luxICDABE

operon. The luxA and luxB genes encode the a and b
subunits of the heterodimeric luciferase enzyme,
which catalyses the oxidation of reduced flavomono-

nucleotide (FMNH2), long chain aliphatic aldehyde

and oxygen. Products of the reaction are oxidized
flavomononucleotide (FMN), aliphatic acid and water.

Simultaneous liberation of excess free energy, evident

as blue-green light, results in the phenotype (Lupp
et al. 2003; Nijvipakul et al. 2008).

Since the discovery of AHL-mediated QS in V.

fischeri, parallel systems employing homologues of the
LuxI and LuxR regulatory proteins have been identi-

fied in a number of Gram-negative bacteria (Lerat and

Moran 2004). Rhizobia, as an example, use QS
regulation of gene expression to coordinate their

behaviour in ways that enhance and spread their

symbiotic capacity (Downie 2010). Quorum commu-
nication via AHLs in rhizobia affects various aspects of

the legume symbiosis, including motility, exopolysac-

charide synthesis (important for infection, attachment
and biofilm formation), symbiosome development,

biofilm formation, symbiotic plasmid transfer, root

nodulation efficiency, and nitrogen fixing efficiency
(Hoang et al. 2004; Laus et al. 2005; Glenn et al. 2007;

Downie and Gonzalez 2008; Edwards et al. 2009;
Frederix et al. 2011; Janczarek 2011; Nievas et al.

2012). Rhizobium species produce a wide variety of

AHLs. Several AHL synthesis and regulator genes
have been described and vary from four in Rhizobium

leguminosarum bv. viciae (rhiR/rhiI, raiR/raiI, traR/

traI, and cinR/cinI) to two in Rhizobium etli
CNPAF512 (cinR/cinI and raiR/raiI) and one (traR/

traI) in R. etli CFN42. N-Octanoyl homoserine lactone
(C8-HSL) and its 3-oxo and 3-hydroxyl derivatives (3-

oxo-C8-HSL and 3-OH-C8-HSL, respectively) have

been found in most of these strains (González and
Marketon 2003). The control of production of exoen-

zyme virulence factors and a carbapenem antibiotic in

the plant pathogen E. carotovora subspecies caroto-
vora is also achieved via the 3-oxo-C6-HSL signalling

molecule (Jones et al. 1993; Pirhonen et al. 1993). The

3-oxo-C6-HSL signal is synthesized by the CarI
protein and the cognate LuxR homologue required

for carbapenem production is called CarR (Jones et al.

1993; McGowan et al. 1996). The CarR/3-oxo-C6-
HSL complex binds to DNA and activates expression

of the car biosynthetic genes to bring about production

of the carbapenem antibiotic at high cell densities
(Welch et al. 2000).

Another complex QS system is seen in P. aerugin-

osa. It has adapted different systems (AHL synthesis
and regulator genes, signaling molecules) to regulate

gene expression: lasI/lasR, rhlI/rhlR; 3-oxo-C12-

AHL, C4-AHL in P. aeruginosa; ahlI/ahlR; 3-oxo-
C6-AHL in P. syringae; phzI/phzR, csaI/csaR; C6-

AHL in P. aureofaciens; phzI/phzR; C6-AHL in P.

chlororaphis; ppuI/ppuR; 3-oxo-C12-AHL in P. put-
ida; mpuI/mpuR; long acyl-chain-AHL in P. fluores-

cens; hdtS; 3-OH-C14:1-AHL in P. fluorescens (Smith

and Iglewski 2003; Wagner et al. 2003; Juhas et al.
2005; Chin et al. 2001, 2005; Bertani and Venturi

2004; Steidle et al. 2002; Venturi 2006).The P.

aeruginosa QS systems control the expression of
extracellular virulence factors as well as biofilm

formation. secrete virulence factors such as secondary

metabolites (pyocyanin, hydrogen cyanide, pyover-
din, etc.), toxins (exotoxin A), exoenzymes [elastase,

proteases (delivered by a type II secretion system;

T2SS), type IV pili (Tfp), flagella and a type III
secretion system (T3SS) that can inject a set of

eukaryote specific effectors across the plasma mem-

brane of target cells (McKnight et al. 2000; Sadikot
et al. 2005; Winstanley and Fothergill 2009; Coggan

and Wolfgang 2012). In addition to AHLs, P. aeru-
ginosa produces a third signalling molecule called

PQS (Pseudomonas quinolone signal; 2-heptyl-3-

hydroxy-4(1H)-quinolone) (Diggle et al. 2007). Like
the AHLs, PQS regulates the production of virulence

determinants including elastase, rhamnolipids, the

galactophilic lectin, LecA, and pyocyanin (a blue-
green phenazine pigment) and influences biofilm
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development (Diggle et al. 2003; Deziel et al. 2005;
Hodgkinson et al. 2010).

While AHL signaling has been found exclusively in

Gram-negative bacterial species, many Gram-positive
species have been shown to utilize peptides as AIs

(autoinducing polypeptides; AIPs) for QS. These

small peptides, which are usually the products of
cleaved/modified oligopeptides, interact with two

component systems—a membrane-bound histidine

kinase receptor and a cognate cytoplasmic response
regulator; and ultimately regulate the gene transcrip-

tion (Taga and Bassler 2003; Waters and Bassler

2005). At threshold concentrations, the peptides are
recognized by sensor kinases that initiate phospho-

transfer to a response regulator. The peptides involved

in Gram-positive QS are often specific for their
cognate receptors (Reading and Sperandio 2006).

One major difference between LuxIR-based and

oligopeptide-based QS systems is the location of the
cognate receptors; whereas the LuxR-type receptors

are cytoplasmic, the sensors for oligopeptide AIs in

Gram-positive bacteria are membrane-bound. The
membrane-bound receptors transduce information

via a series of phosphorylation events. A typical

two-component system consists of a membrane-bound
histidine kinase receptor and a cognate cytoplasmic

response regulator, which functions as a transcrip-

tional regulator (Mascher et al. 2006; Myszka and
Czaczyk 2012). As in AHL QS systems, the concen-

tration of secreted oligopeptide AI increases as the cell

density increases. At threshold concentrations, the
peptides are recognized by sensor kinases that initiate

phospho-transfer to a response regulator. Peptide

binding to the membrane-bound histidine kinase
receptor stimulates its intrinsic autophosphorylation

activity, resulting in ATP driven phosphorylation of a

conserved histidine residue in the cytoplasm. The
phosphate group is subsequently transferred to the

conserved aspartate residue of a cognate response

regulator. Phosphorylated response regulators are
active and they function as DNA binding transcription

factors to modulate expression of target genes. In
many cases, the genes encoding the oligopeptide AI

precursor, the histidine kinase receptor, and the

response regulator form an operon, and its expression
is auto-induced by QS.

Staphylococcus aureus, a commensal of humans

and other mammals, is an opportunistic pathogen
capable of causing nosocomial infections worldwide

and is the etiologic agent of a wide range of diseases,
from relatively benign skin infections to potentially

fatal systemic disorders. The virulence of this organ-

ism is due to the secretion of diverse arsenal of
invasive virulence factors, including hemolysins,

superantigens, and tissue-degrading enzymes, which

all contribute to pathogenesis. QS of this organism is
one of the most studied systems on Gram-positive

organisms. Staphylococci use a key two-component

system, encoded in the QS agr (accessory gene
regulator) locus to coordinate population density with

the expression of a large set of accessory protein

genes, many of which are involved in pathogenesis
(Dunman et al. 2001; Novick and Geisinger 2008). agr

system regulates over 70 genes, 23 of which are known

virulence factors (George and Muir 2007). The agr
locus consists of two divergent transcribed operons,

RNAII and RNAIII controlled by the P2 and P3

promoters. P2 drives transcription of a four-gene
operon (agrBDCA) (Novick et al. 1995; Roux et al.

2009), whose products are involved in the production

(agrBD) and sensing (agrCA-AgrC is the signal
transducer; AgrA the response regulator) of the AIP.

Bacillus subtilis, under stressful environmental

conditions undergoes stochastic switching, in which
it goes from the vegetative state to a competent state.

In this physiological state, it has an increased ability to

bind and take up high molecular weight exogenous
DNA (transformation) to increase its chances of

survival. It expresses a set of proteins involved in

the uptake and integration of extracellular DNA. The
expression of these proteins in the competent state is

tightly controlled and initially regulated by a QS

system. The ComX–ComP–ComA signalling pathway
is a major quorum response pathway in B. subtilis and

regulates the development of genetic competence.

This QS system in B. subtilis is composed of the
ComX pheromone and the two-component regulators

ComP and ComA (Lazazzera and Grossman 1998;

Dubnau and Lovett 2002).

Applications

Synthetic biology

Synthetic biology aims at the synthesis of complex,

biologically based systems, which display functions
non-existent in nature, through engineering of genetic
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elements and the integration of basic elements into
complex functional circuits (Endy 2005). Cell–cell

communication represents a valuable mechanism to

engineer novel signaling constructs in bacteria. The
genetic elements of V. fischeri QS have been success-

fully used to engineer several cell–cell communication

systems. This system, as discussed in the previous
sections consists of sender cells producing AHL

molecules, which, after diffusing through the bacterial

membranes, reach receiver cells where they bind the
LuxR transcription activator and stimulate biolumines-

cence. Gardner et al. (2000), with their construction and

characterization of a transcriptional toggle switch,
pioneered work in this field (Fig. 1). They constructed

a synthetic, bistable gene-regulatory network in Esch-

erichia coli, which composed of two repressors and two
constitutive promoters. Each promoter is inhibited by a

repressor that is transcribed by the opposing promoter.

The toggle flipped between stable states using transient
chemical or thermal induction. As a practical device,

the toggle switch forms a synthetic, addressable cellular

memory unit and has implications for biotechnology,
biocomputing and gene therapy.

Insertion of QS in E. coli was the key to engineer a

‘‘pulse generating network’’ (Basu et al. 2004). Their
system included sender cells that could be induced to

synthesize AHL, which diffused to nearby pulse-

generating receiver cells. Receiver cells responded to
this long-lasting increase in the level of AHL by

transiently activating, and then repressing, the expres-

sion of a GFP. The receiver circuit contained a feed-
forward motif that in response to a stimulus exhibited

an initial excitation followed by subsequent delayed

inhibition. The circuit differentiated between various
rates of increase in stimulus levels, enabling a

spatiotemporal behavior. A step increase in concen-

tration of the signaling molecule resulted in a pulse
response with an amplitude that depended on the

concentration of signal. The engineered bacteria could

sense the time derivative of the signal concentration.
As a consequence, receiver cells near the sender cells

responded to the communication signal, whereas

receiver cells that were further away ignored this
signal. Basu et al. (2005) showed a synthetic multi-

cellular system in which genetically engineered

‘receiver’ cells were programmed to form ring-like
patterns by expressing reporter proteins of different

colors in concomitance of diverse AHL concentrations

(Fig. 2). The band-detect multicellular system pro-
grams E. coli receiver cells to fluoresce only at

intermediate distances from sender cells.

Significant results were achieved in E. coli, by You
et al. (2004). They built and characterized a ‘popula-

tion control’ circuit that autonomously regulates the

Fig. 1 Toggle switch-transcriptional gene circuits. As con-
structed by Gardner et al. (2000), the PLs1con promoter was
used to drive transcription of lacI, the product of which represses
a second promoter, Ptrc2 (a lac promoter variant). Conversely,
Ptrc2 drives expression of a gene (cI-ts) encoding the
temperature-sensitive CIts repressor protein, which inhibits

the PL promoter. Activity of circuit is monitored through a third
gene expressing GFP, that is under the control of one of the two
repressors. ‘‘Switch’’ functionality is conferred to the system
with exogenous addition of the chemical inducer isopropyl-b-D-
thiogalactopyranoside (IPTG) or with a transient increase in
temperature
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density of an E. coli population. They coupled QS with
the synthesis of toxic proteins and obtained in this way

a cell population control mechanism. The cell density

is broadcasted and detected by elements from a
bacterial QS system, which in turn regulate the death

rate. At sufficiently high concentrations, AHL binds

and activates the LuxR transcriptional regulator,
which in turn induces the expression of a killer gene

(E) under the control of a luxI promoter (pluxI). One

possible application of this population-based gene
expression system is in the creation of cost-effective

long-term fermentation processes for the self-regu-

lated production and subsequent harvesting of exog-
enous cytotoxic proteins. Rasmussen et al. (2005)

constructed a collection of screening systems, QS

inhibitor (QSI) selectors, which enabled them to
identify a number of novel QSIs among natural and

synthetic compound libraries. An extension of these

works on cell–cell communication is the generation of
artificial ecosystems, where one cell produces mole-

cules that the other needs. Bulter et al. (2004),

developed artificial QS system to establish a gene-
metabolic network where bacterial cells exchange

acetate molecules that are produced in proportion to

cell growth. This circuit uses a threshold concentration
of acetate to induce gene expression by acetate kinase

and part of the nitrogen-regulation two-component

system. Anderson et al. (2006) engineered the inter-
action between bacteria and cancer cells. They con-

structed a synthetic gene network that enabled E. coli

cells to invade cancer-derived cells only when tumor-
indicative conditions were present. They characterized

invasin (inv) gene from Yersinia pseudotuberculosis

as an output module that enables E. coli to invade
cancer-derived cells, including HeLa, HepG2, and

U2OS lines. They constructed different plasmids

containing the inv gene under QS control of the lux
promoter, the hypoxia-responsive fdhF promoter, and

the arabinose-inducible araBAD promoter. E. coli

harboring these plasmids invaded cancer-derived cells
in a density-dependent fashion, under anaerobic

growth conditions, and upon arabinose induction,

respectively. Thus, the inv expression was activated
only at high cell density or during hypoxic growth

conditions, which are the environmental conditions

associated with the accumulation of bacteria at a
tumor site and the high respiratory rate of cancerous

cells. This approach could be used to engineer bacteria
to sense the microenvironment of a tumor and respond

by invading cancerous cells and releasing a cytotoxic

agent.
In another system, Kobayashi et al. (2004) inter-

faced a toggle switch with a QS signaling pathway

(Fig. 3). They constructed an engineered gene net-
work containing three different plasmids: (i) a sensor

Fig. 2 Band detect network design and activity as a function of
distance from a sender cell. Only receivers at intermediate
distances from senders express the output protein. aTc initiates
production of LuxI in the sender cells by binding the tetracycline
repressor (TetR) and disabling it from repressing the tetracy-
cline promoter. LuxI catalyses the synthesis of AHL, which
diffuses through the cell membrane and forms a chemical
gradient around the senders. In receivers, that are at close
proximity to senders, AHL concentration is high. AHL binds to
its cognate R protein, LuxR, that activates the expression of
lambda repressor (CI) and Lac repressor (LacI, a product of a
codon-modified lacI), which represses expression of GFP. At
medium AHL concentrations, the cells produce moderate levels
of CI and LacI, and while CI levels are sufficiently high to
repress LacI expression the weaker LacI repressor does not
inhibit expression of GFP. At low AHL levels, LacI and CI are
not expressed and expression of a wild-type LacI, results in GFP
repression
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plasmid (pAHLb; to enable the E. coli population to
measure its own density through AHL), where the luxI

gene from V. fischeri expressed polycistronically with

the luxR gene and lacI expressed from the P promoter;
(ii) the toggle switch plasmid (pTSMb2), for the

expression of LacR and CI; and an output plasmid

(pCIRb), with the reporter gene gfp. The signal
molecule AHL diffuses between the culture and cells,

and its extracellular concentration correlates with the

cell density in cultures of cells that carry the luxI gene.
AHL regulates the transcription of lacI in the sensor

plasmid by formation of the AHL–LuxR dimer. As a

result, lacI expression from the pAHLb plasmid is
increased, when the cell density increases. The

expression of LacR in the toggle switch plasmid is

negatively regulated by CI, whereas the expression of
CI is negatively regulated by the total LacR expressed

from the sensor plasmid and the toggle switch plasmid.

Because of the modular design of their system, density
dependent synthesis of any protein can be achieved

simply by replacing the gfp gene on the high-copy

number reporter plasmid with a gene of interest.
Brenner et al. (2007) established a coordinated

behavior between two bacterial populations (consor-

tium) communicating via AHL. Two colocalized
populations of E. coli conversed bidirectionally by

exchanging AHLs. The consortium generates the

gene-expression response if and only if both popula-
tions are present at sufficient cell densities. In this

case, a particular gene is expressed only once both

populations have reached a given density, which
implies an AND gate with population concentrations

as inputs. The microbial consensus consortium oper-
ates in diverse growth modes, including in a biofilm,

where it sustains its response for several days. An

engineered biofilm consortium might eliminate
unwanted infection or even destroy harmful cells in

the body. Furthermore, a synthetic predator–prey

ecosystem was engineered in E. coli cells by using
two different signals (Balagadde et al. 2008). Here, the

predator cells emit a chemical that kills the prey by

inducing the synthesis of a toxic protein; the prey, on
the contrary, rescue predator cells by sending them the

substance necessary to repress the production of the

corresponding killer protein. Depending on the
growth/death rate of the two groups, one of them will

dominate or their concentrations will give rise to

oscillations. Danino et al. (2010) described an engi-
neered gene network with intercellular coupling that is

capable of generating synchronized oscillations in a

growing population of cells. The synchronized oscil-
lator design is based on elements of the QS machin-

eries in V. fischeri and B. thurigensis. They placed the

luxI (from V. fischeri), aiiA (from B. thurigensis) and
yemGFP genes under the control of three identical

copies of the luxI promoter. By introducing AiiA,

which degrades AHL, under the control of LuxR, cells
were produced that responded to a quorum by

destroying the QS signal. With the concept of QS in

mind, Saeidi et al. (2011) genetically engineered
nonpathogenic E. coli to first detect P. aeruginosa

using its QS molecules and then releasing a protein

toxin to kill the pathogen. They described the design
and construction of a synthetic genetic system, in a

Fig. 3 Toggle switch with a
quorum-sensing signaling
pathway
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nonpathogenic chassis, E. coli which comprised QS,
killing, and lysing devices, which enables E. coli to

sense and kill a pathogenic P. aeruginosa strain

through the production and release of pyocin. The
sensing device was designed based on the Type I QS

mechanism of P. aeruginosa. The tetR promoter,

which is constitutively on, produces a transcriptional
factor, LasR, that binds to AHL 3OC12HSL. The luxR

promoter, to which LasR-3OC12HSL activator com-

plex reportedly binds, was adopted as the inducible
promoter in their sensing device (Gray et al. 1994).

Next, the formation of the LasR-3OC12HSL complex,

which binds to the luxR promoter, activates the killing
and lysing devices, leading to the production of pyocin

S5 and lysis E7 proteins within the E. coli chassis.

Upon reaching a threshold concentration, the lysis E7
protein perforates membrane of the E. coli host and

releases the accumulated pyocin S5. Pyocin S5, which

is a soluble protein, then diffuses toward the target
pathogen and damages its cellular integrity, thereby

killing it.

Preventing biofouling

Natural and artificial substrata in the marine environ-
ment are colonized by micro- and macro-organisms in

a process known as biofouling. Biofouling poses one

of the most serious problems for aquaculture devel-
opment, marine industries and navies around the world

(Yebra et al. 2004). In the marine environment, natural

and artificial surfaces immersed in seawater are
colonized by biofoulers including micro-foulers such

as marine bacteria, algae, and protozoa, and macro-

foulers such as barnacles, bryozoans, and tubeworms
(Callow and Callow 2002; Dobretsov et al. 2006).

Although biofouling is primarily caused by marine

invertebrates and plants, bacterial biofilms are
believed to be the first colonizers of submerged

surfaces, to which other marine organisms may attach

(Rice et al. 1999). The process of biofouling occurs by
both physical (reversible adsorption) and biochemical

(irreversible adhesion) reactions. The physical reac-
tions are governed by factors such as Brownian

motion, van der Waals forces (Katsikogianni and

Missirlis 2004), electrostatic interaction and water
flow, and lead to formation of the conditioning biofilm

composed of organic materials such as protein,

polysaccharide, and proteoglycan, on the substrate
surface. This step is short (1 min), and provides a

stickier surface for microorganisms such as bacteria and
microscopic eukaryotes (e.g. diatoms, fungi, and other

heterotrophic eukaryotes) to adhere to the surface.

Biofilms are three-dimensionally structured communi-
ties of microbes whose function depends on complex

interactions that occur both within and between species

and can be either competitive or cooperative (Stoodley
et al. 2002; Li et al. 2012). After the formation and

development of biofilm, larvae or spores of macrofo-

ulers (invertebrate larvae and algal spores) (Wright
et al. 2004) attach to the surface. Two or three weeks

later, these finally evolve into a complex biological

community. The biochemical reactions include secre-
tion of extracellular polymeric substances (EPS; mainly

composed of glucose- and fructose-based polysaccha-

ride fibrils) (Decho 2000), which bacteria use to adhere
temporarily to the surface. The mass of cells in biofilms

accounts for only 2–5 % of the total weight with the

remainder contributed by the EPS matrix. Diatoms are
the most important contributors during biofilm forma-

tion in the marine environment (Callow 2000). Because

most of the diatoms lack flagella, they are unable to
actively approach a given surface, and land passively on

the substratum. After the diatoms land on the surface,

they actively form the initial reversible attachment
called primary adhesion through secretion of EPS. In

secondary adhesion, the diatoms reorient themselves

and move along the surface into better positions based
on their preferences, through diatom gliding. Diatom

EPS (Wetherbee et al. 1998) is a multicomponent,

mucilaginous, organic bioadhesive complex found
exterior to the plasma membrane. In common with

the EPS of many bacteria, the major matrix components

are acidic polysaccharides that are frequently carbox-
ylated or sulphated (Chiovitti et al. 2003; Molino and

Wetherbee 2008; Zargiel et al. 2011). Proteoglycans are

also implicated in both adhesion and gliding motility
(Wetherbee et al. 1998). motile, quadriflagellate, naked

spores (zoospores) of Ulva [formerly Enteromorpha

(Hayden et al. 2003)], are extremely important in
biofouling because of their abundance in seawater and

adaptability to different environments. The spores settle
through a process involving sensing of a surface, and

temporary adhesion (Callow et al. 1997; Callow 2000).

Barnacle cyprids use antennulae for crawling, attach-
ment and sensory functions to investigate the surface.

When an appropriate surface is found, cyprid larvae

attaches via o-quinone cross-linking that resembles the
dihydroxyphenylalanine (DOPA)-containing adhesive
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proteins of Mytilus spp. (Wiegemann 2005). This
cement embeds the antennular attachment organs and

hardens because of protein polymerization. After stable

settlement, cyprids metamorphose into juvenile barna-
cles, and finally become adults (Wiegemann 2005;

Kristensen et al. 2008).

Biofoulers that accumulate on the ship hulls
increase drag and surface corrosion, thereby severely

diminishing ships’ maneuverability and carrying

capacity (Chambers et al. 2006). In addition, biofoul-
ing causes huge material and economic costs in

maintenance of mariculture, naval vessels, and sea-

water pipelines (Yebra et al. 2004). In order to control
biofouling, broad-spectrum metal biocides, such as

tributyl tin (TBT), copper or organic compounds (e.g.

sea-nine, isothiazolone) have been added to marine
paints as antifouling compounds (Thomas et al. 2001;

Bhadury and Wright 2004). Although very effective,

all these chemicals are toxic to a wide range of non-
target organisms and pollute the aquatic environment

(Alzieu 2000; Konstantinou and Albanis 2004). For

example, gastropod imposex, mussel larvae mortality,
and oyster shell malformation have all been recorded

as ecotoxicological effects of TBT even at extremely

low concentrations (in the ng l-1 range) (Alzieu
2000). This led the International Maritime Organiza-

tion (IMO) and Marine Environmental Protection

Committee to prohibit the use of toxic organotin
tributyltin-based paint product as anti-biofouling

agents, effective from 17 September 2008 (IMO

2001; Qian et al. 2010). Alternative biocide-based
anti fouling (AF) paints, containing compounds such

as Irgarol 1051, diuron, Sea-Nine 211, chlorothalonil,

dichlofluanid, and zinc pyrithione are the most
frequently used booster biocides worldwide, and some

of these have also been found to accumulate in coastal

waters at levels that are deleterious for marine
organisms (Omae 2003; Konstantinou and Albanis

2004; Bellas 2006; Thomas and Brooks 2010).

Accordingly, in the absence of effective alternative
to TBT, there is an urgent need for the development of

‘environmental friendly’ nontoxic antifoulants.
Marine invertebrate larvae utilize biofilms as

indicators of substratum suitability for eventual

settlement (Railkin 2004). Since the establishment of
microbial biofilms is a prerequisite not only for

subsequent microbial colonisation but also macrofo-

ulers, such as invertebrate larvae and algal spores,
disruption of bacterial biofilms can result in the

diminution of macrofouling of submerged surfaces
(Burgess et al. 2003; Patel et al. 2003; Dobretsov et al.

2007). Since QS controls bacterial biofilm differenti-

ation and maturation (Sauer et al. 2002; Xavier and
Bassler 2003), interruption of QS by inhibition of QS

signal generation (Rasmussen and Givskov 2006);

degradation of QS signals (Dong et al. 2002; Rajamani
et al. 2011; Oh et al. 2012); inhibition of DNA

transcription (Zhang and Dong 2004); competition

with/suppression of QS receptors (Rasmussen and
Givskov 2006) can be ideal treatments for controlling

biofilm formation that would eventually lead to

biofouling (de Nys et al. 2006; Dobretsov et al.
2007, 2009; Qian et al. 2010).

In the marine environment, many organisms

including bacteria, cyanobacteria, algae, sponges,
fungi and tunicates (Dobretsov et al. 2011) are

endowed with effective defense mechanisms to disrupt

bacterial biofilms and thus prevent or control micro-
bial colonization. One of the well-documented strat-

egies is the disruption of bacterial QS by the

production of inhibitor compounds (Hentzer et al.
2002; Ni et al. 2009; Ng et al. 2012). The first QS

inhibitor was isolated from the red macro-alga Delisea

pulchra (Givskov et al. 1996). A broad range of
secondary metabolites, brominated furanones [(5Z)-4-

bromo-5-(bromomethylene)-3-butyl-2(5H)-furanones]

produced at the surface of this alga inhibit the growth of
Gram-negative bacteria as well as the settlement of

invertebrate larvae (Rasmussen et al. 2000; Kjelleberg

et al. 2001; Fusetani 2011; Natrah et al. 2011). The
structures of these halogenated furanones are similar to

AHL, except that furanones have a furan-ring instead of

a homoserine lactone ring. The halogenated furanones
most probably bind to LuxR family proteins without

activating them (Manefield et al. 1999; Rasmussen et al.

2000). It has been reported that these furanone-type QS
inhibitors have an ability to inhibit some AHL-

regulated phenotypes, such as swarming motility,

flagella-driven movement, extracellular biosurfactant
production, and eventually control microbial attach-

ment and biofilm formation by several bacterial species
(Hentzer et al. 2002). Manefield et al. (2000) reported

that furanones repressed AHL-dependent expression of

V. fischeri bioluminescence. Hentzer et al. (2002)
applied furanones to P. aeruginosa biofilms and

observed that furanones penetrated microcolonies and

blocked cell signalling and QS in most of the biofilm
cells. The compound did not affect initial attachment to
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the abiotic substratum, however, it affected the archi-
tecture of the biofilm and enhanced the process of

bacterial detachment from the substratum. A non-

halogenated, commercially available 2(5H)-furanone
has been found to inhibit the AHL molecules with

varying chain lengths and significantly reduce the

biofilm mass of Aeromonas hydrophila isolated from a
biologically fouled RO membranes on polystyrene

surface, which suggested that 2(5H)-furanone could be

used as potential QS inhibitor compound that reduce the
biofouling (Ponnusamy et al. 2010). Another seaweed

belonging to the same family, Bonnemaisonia hamif-

era, also showed antifouling activities (Nylund and
Pavia 2005). The seaweed inhibited growth of nine

different bacterial strains from five different groups.

Macroalga, Ahnfeltiopsis flabelliformis produces non-
lactone QS inhibitors, such as floridoside, betonicine,

and isethionic acid that interfere with bacterial AHL

signals by an unknown mechanism (Kim et al. 2007).
Brown algae from the family Laminariaceae were

reported to produce hypobromous acid, which deacti-

vates 3-oxo-acyl-HSL molecules (Borchardt et al.
2001). Green alga Chlamydomonas reinhardtii has

been reported to produce a QS inhibitor (lumichrome)

that mimics the activity of AHL signal molecules
(Teplitski et al. 2004; Rajamani et al. 2008). Jha et al.

(2013) tested thirty marine macroalgae for QS inhibi-

tion activity by using Chromobacterium violaceum
CV026 as the reporter strain, and reported that Aspar-

agopsis taxiformis showed antibacterial, as well as

antiquorum sensing activities. Lyngbyoic acid obtained
from a marine cyanobacterium is known to inhibit QS

(Kwan et al. 2011). Some of the gorgonian corals from

the Caribbean reef showed antibacterial and QS
inhibitory effects (Hunt et al. 2012).

Dobretsov et al. (2011) screened 78 different

natural products from chemical libraries containing
compounds from both marine organisms and terres-

trial plants. More than half of the natural products had

activity against bacterial QS; 24 % inhibited the QS of
Chromobacterium violaceum CV017 without any

toxicity and 21 % inhibited QS of C. violaceum
CV017, with some antibiotic activity at higher

concentrations. Amongst the natural products isolated

and identified by them from fungi, sponges and brown
algae, hymenialdisin, dulcitol, kojic acid, midpaca-

mide and tenuazonic acid were responsible for the

most marked QS inhibition. Golberg et al. (2013)
collected one hundred and twenty bacterial isolates

from healthy coral species and screened them for their
ability to inhibit QS. Approximately 12, 11, and 24 %

of the isolates exhibited anti-QS activity against

Escherichia coli pSB1075, Chromobacterium viola-
ceum CV026, and Agrobacterium tumefaciens KYC55

indicator strains, respectively. Their study concluded

that coral-associated bacteria are capable of producing
compounds which inhibit QS and prevent the forma-

tion of biofilm.

Formation of biofilm can be inhibited by enzymatic
degradation of the signals involved in biofilm forma-

tion (Rajamani et al. 2011; Oh et al. 2012; Dobretsov

et al. 2013). Some bacteria can completely degrade
AHLs through the combined action of several

enzymes (Huang et al. 2003; Uroz et al. 2003, 2005).

The AHL-degrading enzymes, are broadly classified
into two groups—AHL lactonases, that hydrolyse the

lactone ring in AHLs and AHL-acylases that that

cleave the N-acyl bond of AHLs, found in several
different types of bacteria including a Ralstonia strain

XJ12B, pseudomonads, and a Streptomyces species

(Dong and Zhang 2005; Chen et al. 2009; Feng et al.
2013). AHL-lactonases mostly fit into two families:

Zn-dependent metallo-b-lactamases (e.g. the autoin-

ducer inactivating enzyme (AiiA), originally identi-
fied and purified from a Gram-positive Bacillus strain

(Dong et al. 2000)) and metallo-dependent phospho-

triesterases (PTE, e.g. QsdA in Rhodococcus ery-
thropolis). Purified AiiA protein cleaves the

homoserine lactone ring in C4 to C12-HSLs, with or

without substitution at carbon three position. PTE
protein can degrade AHLs which have an acyl chain of

C6–C14 in length (Uroz et al. 2008). The other family

of AHL degradation enzymes is AHL acylase. This
was first described in Variovorax paradoxus (Lead-

better and Greenberg 2000; Leadbetter 2001). The

organism was isolated from soil based upon its ability
to utilize 3-oxo-C-HSL as both an energy and nitrogen

source. AHL is initially cleaved into a fatty acid and

homoserine lactone moiety by an uncharacterized
acylase in first reaction step, and subsequently the

fatty acid is subjected to beta-oxidation as an energy
material, while the homoserine lactone is degraded

into ammonium chloride and carbon dioxide. A novel

AHL-acylase was identified and isolated from the
marine nitrogen-fixing filamentous cyanobacterium

Anabaena sp. PCC 7120 (Romero et al. 2008). This

enzyme, named ‘autoinducer inhibitor from cyano-
bacteria’ (AiiC), could be used by the
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cyanobacterium to control the response of its own QS
signals, but can potentially be used to interfere with

signalling within mixed microbial communities.

Further research revealed the presence of similar
genes in other cyanobacteria, such as Nostoc punc-

tiforme, N. violaceus and Synechocystis sp., which

indicate that these enzymes may be widespread
among cyanobacteria (Romero et al. 2008). Several

naturally occurring bacteria producing AHL-degrad-

ing enzymes have been identified as promising agents
in reducing biofouling of membranes in wastewater

treatment facilities (Oh et al. 2012). Decho et al.

(2009) examined the production of AHLs by marine
microbial mats (stromatolites) composed mostly of

cyanobacteria and sulphate-reducing bacteria and

reported that microbial mats produce a wide range
of AHLs (from C4- to C14-HSL) under natural

conditions. Marine organisms not only respond to

bacterial QS signals, but also interfere and block
them, presumably to control the growth of alien

bacteria, which would lead to biofilm formation and

epibiosis (Skindersoe et al. 2008; Dobretsov et al.
2009). Investigations conducted on the Great Barrier

Reef showed that 23 % of extracts of 284 marine

organisms, including corals, sponges, and algae
inhibited bacterial AHL-mediated QS signaling

(Skindersoe et al. 2008).

Conclusion and future prospects

Bacteria exist in multifaceted communities and

exploit elaborate systems of intercellular communi-

cation involving signals, signal sensors, and signal
transduction mechanisms to facilitate their adapta-

tion to changing environment. AHL and AIP-depen-

dent gene regulation has received increasing
recognition as an important form of cell–cell commu-

nication in bacteria. Although this review described a

few signaling systems, in detail, it is clear that many
more remain to be discovered. Biotechnological

research is now focused on the development of
molecules that are structurally related to AIs. Such

molecules have potential use as antimicrobial drugs

aimed at bacteria that use QS to control virulence.
Study of bacterial QS systems promises to give

biologists new insights into novel mechanisms of intra-

and intercellular signal transmission, intra- and inter-
species communication and the evolution of

multicellular organisms. The majority of synthetic
biology is currently practiced in microbes, however,

many of the most pressing problems, and in particular

those of human health, are inherent problems with
mammalian systems. Therefore, a more concerted

effort towards advancing mammalian synthetic biology

is critical to next-generation therapeutic solutions,
including engineering synthetic gene networks for stem

cell generation and differentiation. Strategies that

disrupt QS systems in pathogenic bacteria or in
microorganisms causing fouling, could be a promising

alternative for antibiotics or biocides in controlling

these undesirable microbial behaviors.
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