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Abstract Six bacterial genera containing species commonly
used as probiotics for human consumption or starter cultures
for food fermentationwere compared and contrasted, based on
publicly available complete genome sequences. The analysis
included 19 Bifidobacterium genomes, 21 Lactobacillus
genomes, 4 Lactococcus and 3 Leuconostoc genomes, as
well as a selection of Enterococcus (11) and Streptococcus
(23) genomes. The latter two genera included genomes from
probiotic or commensal as well as pathogenic organisms to
investigate if their non-pathogenic members shared more
genes with the other probiotic genomes than their pathogenic
members. The pan- and core genome of each genus was
defined. Pairwise BLASTP genome comparison was per-
formed within and between genera. It turned out that
pathogenic Streptococcus and Enterococcus shared more
gene families than did the non-pathogenic genomes. In silico
multilocus sequence typing was carried out for all
genomes per genus, and the variable gene content of
genomes was compared within the genera. Informative
BLAST Atlases were constructed to visualize genomic

variation within genera. The clusters of orthologous
groups (COG) classes of all genes in the pan- and core
genome of each genus were compared. In addition, it
was investigated whether pathogenic genomes contain
different COG classes compared to the probiotic or
fermentative organisms, again comparing their pan- and
core genomes. The obtained results were compared with
published data from the literature. This study illustrates
how over 80 genomes can be broadly compared using
simple bioinformatic tools, leading to both confirmation
of known information as well as novel observations.

Introduction

The first bacterial genome sequences were published in
1995, and within 15 years, over a thousand fully sequenced
bacterial genomes have become publicly available [16]. A
number of these genome sequences are derived from
bacteria used as probiotics or starter cultures in food
fermentation, or both. Reid and co-workers [21] defined
probiotics as “live microorganisms which when adminis-
tered in adequate amounts confer a health benefit on the
host”. A number of bacterial species from various genera
are in use as probiotics, including members of Lactobacil-
lus, Lactococcus and, less commonly, Leuconostoc. These
Firmicutes are sometimes collectively described as lactic
acid bacteria (LAB). Other commonly used probiotic
species belong to Bifidobacterium, a genus within the
phylum Actinobacteria. These genera exclusively contain
species that are unlikely to cause disease while colonizing
the intestine, and although some species (e.g. Bifidobacte-
rium dentium) have been associated with dental disease,
these are more commonly members of a normal oral flora.
The distinction between normal gut flora (commensals) and
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probiotic bacteria having a beneficial effect on their host’s
health cannot always be made, for which reason we
collectively describe them here as ‘non-pathogens’. Species
belonging to LAB or Bifidobacterium are also frequently
used in food fermentation, another application where the
bacterial load of food is desirably increased. Besides LAB
and Bifidobacterium, fermentation starter cultures can
typically comprise of Streptococcus thermophilus, a non-
pathogenic member of this genus that mostly contains
pathogenic species. Some strains of Enterococcus are also
in use as starter cultures or probiotics, whereby the used
species also contain pathogenic strains. These two genera
are therefore of interest, and their species that are used as
starter cultures are included in our general description of
‘non-pathogens’. Other types of bacteria (particular strains
of Escherichia coli, Pediococcus species and others) or
yeasts used as starter cultures or probiotics are not treated
here.

For all six genera of interest, multiple genome sequences
are publicly available. In many cases, several genomes per
species have been sequenced, so that the variation between
and even within species can be assessed. One obvious
question that could be addressed by comparison of these
genomes is: what genes (if any) are common to all genomes
of non-pathogens and distinct from genes found in (related)
pathogens? Such a comparison requires including multiple
species and genera of multiple bacterial phyla (in this case,
the phylum of Firmicutes and Actinobacteria). As a general
rule, genetic diversity increases with evolutionary distance,
so that the genetic variation in such a collection of genomes
will be enormous. One way of extracting information from
such complex data is by grouping genes into functional
groups or families, so that gene families rather than
individual genes are compared. Such grouping is based on
protein sequence similarity, as this approximately predicts
conservation of gene function, ignoring the exceptions
resulting from parallel evolution where function similarity
does not coincide with sequence conservation. Slight
differences in function, resulting from minor differences
in sequences, are usually ignored in these groupings, so that
fewer but broader groups can be achieved.

In this contribution, 2 approaches were used to compare
over 80 genomes from 6 bacterial genera of interest. First,
all protein-coding genes from these genomes were grouped
into gene families based on sequence identity using a
defined similarity cut-off, after which comparisons between
and across genera could be performed. Genomes were then
compared within their genus for both conserved and
variable genes. Second, clusters of orthologous groups
(COG) of genes were used to produce functional groups of
genes. An attempt was made to identify differences in
functional gene distribution between pathogenic and non-
pathogenic members of the six genera of interest.

Materials and Methods

Selection of Genomes Used in This Study

Publicly available genomes of the six bacterial genera
analyzed here were identified from the NCBI web pages. All
completely sequenced genomes (as of July 2010) of 4
Lactococcus lactis strains, 3 Leuconostoc species and 21
Lactobacillus strains from 14 species were included. For
Bifidobacterium, 11 completely sequenced and 8 incomplete
genomes were selected; the latter were chosen when fewer
than 70 contigs resulting in 19 genomes from 9 species.
Since only 1 complete Enterococcus genome was available
at the time of analysis, this genome was combined with 10
incomplete sequences, provided they were represented in
fewer than 80 contigs, whereby animal isolates were
excluded. This allowed inclusion of 2 strains obtained from
normal gut flora to give 11 genomes from 4 species. For
Streptococcus, all S. thermophilus genomes were included.
All other species of this genus for which genome sequences
were available are pathogens, and a selection of these was
made of three genomes per species. These were chosen
based on their strain characteristics to cover common but
diverse serotypes. Animal isolates were excluded, although
Streptococcus suis (a typical pig pathogen) was included as it
has been responsible for a large human outbreak in China.
This resulted in 23 genomes from 12 species. All genomes
are listed in Table 1, which also provides characteristics such
as their size, GC content and the strain description. The latter
was extracted from the Genome Project pages at NCBI but
checked in the corresponding genome publication when
available. This resulted in a few small differences from
descriptions listed on the Genome Project Description pages
at NCBI. The derived proteomes (protein-coding sequences
translated from the DNA sequence) were extracted from
GenBank for completed sequences or produced with
Prodigal [14] for incomplete sequences.

Definition of Gene Families and Pan- and Core Genome

The pan-genome of a collection of genomes represents all
genes encountered in these genomes [27]. In order to define
a pan-genome, the criteria to score a gene as ‘conserved’ or
‘novel’ were used as previously described [12]. Simply put,
two genes are considered to belong to the same gene family
and thus ‘conserved’ when their amino acid sequence is at
least 50% identical over at least 50% of the length of the
longest gene. All genes of a genome are thus grouped into
gene families. Multiple genes per genome can belong to a
single gene family, resulting in a lower number of gene
families per genome than the reported number of genes. A
gene not finding a match with the given criteria is put in its
own gene family as a singleton.
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An accumulative pan-genome was constructed according
to Friis et al. [11], who built on work by Tettelin and co-
workers [27]. A resulting pan-genome curve increases in size
as more genomes are analyzed, and its shape is order-dependent,
though the accumulative pan-genome is not influenced by the
order of analysis. Similarly, a core genome is defined as all gene
families conserved in all analyzed genomes, and this decreases
in size as more genomes are analyzed.

Pairwise pan- and core genomes were calculated for all
genome combinations as above, and for each combination,
the obtained core genome was expressed as the fraction of
the pan-genome. These percentages were visualized in a
BLAST Matrix [11].

Core Genome Consensus Tree

Phylogenetic trees were constructed of all core genes that were
conserved within the analyzed Firmicute genomes. Multiple
alignments of all core sequences were performed with
MUSCLE software [7]. PAUP was used to construct a set of
core trees [10]. Later, these trees were compared and a best-fit
consensus tree was constructed as described by Retief [22].

In Silico MLST Analysis

In silico multilocus sequence typing (MLST) analysis was
performed with gene fragments extracted from the genome
sequences. For Bifidobacterium, gene fragments from clpC,
fusA, gyrB, IleS, purF, rplB and rpoB were extracted,
according to the method proposed for Bifidobacterium
bifidum, Bifidobacterium breve and Bifidobacterium lon-
gum [6]. For Enterococcus, the gene set of gdh, gyd, pstS,
gki, aroE, xpt and yqlI, which is advised for use in
Enterococcus faecalis (http://www.mlst.net), was compared
with that designed for Enterococcus faecium, which is
based on atpA, ddl, gdh, purK, gyd, pstS and adk. For
Lactobacillis, de Las Rivas and co-workers [4] described an
MLST gene set specified for Lactobacillis plantarum based
on the target genes pgm, ddl, gyrB, purK1, gdh, mutS and
tkt4. Two alternative combinations of genes have been
proposed for Lactobacillis casei: ftsZ, polA, mutL, metRS,
nrdD and pgm [1] or fusA, ileS, lepA, leuS, pyrG, recA and
recG (http://www.pasteur.fr). A fourth gene set (gdh, gyrA,
mapA, nox, pgmA and pta) has recently been described for
Lactobacillis sanfranciscensis [20], but since this species is
not represented in our dataset, this scheme was not used.
For each genus, after concatenation of the gene fragments, a
maximum likelihood phylogenetic tree was constructed.

Analysis of Variable Gene Content

The variable gene content of the analyzed genomes was
compared using the method by Snipen and Ussery [24].

This method calculates Manhattan distances based on a
matrix in which the presence or absence for each gene in
each genome is scored with the binary score of 0 (absent) or
1 (present). Core genes and singletons are ignored. BLAST
Atlases were produced according to Hallin and co-workers
[12].

COG Analysis

COG is a database of proteins where each sequence is
assigned to some group. All proteins within a group are
believed to have a common ancestor and are likely to share
a common function. The various groups are again clustered
into some super-groups called functional groups [26]. In
this analysis, each found protein was compared to the COG
database using BLASTP to identify the functional groups to
which they belong. An R-script was used to analyze the
protein composition in pan- and core genomes, and the
results were visualized in a pie chart. This was done using
standard operating procedures [19].

Results

Comparison of Pan-Genomes

After the selection of genome sequences as described in the
“Materials and Methods” section, 81 genome sequences
were obtained from organisms listed in Table 1. These
represented 43 different species and coded for 147,074
protein genes in total. Table 2 summarizes some average
findings for each of the analyzed genera. Enterococcus has
the largest average genome size and Leuconostoc the
smallest, a difference that is reflected in their average
number of genes, since gene density is generally conserved
in these bacteria. Bifidobacterium has a significantly higher
CG content, which was one of the reasons to place this
genus in the Actinobacteria [9]. The CG content varied
most within the genus of Lactobacillus, with a CG content
below 37.2% for Lactobacillus acidophilus, Lactobacillus
crispatus, Lactobacillus gasseri, Lactobacillus helveticus,
Lactobacillus johnsonii and Lactobacillus salivarius;
genomes of the other members of this genus contain at
least 38.9% CG. The average number of gene families (as
defined in the “Materials and Methods” section) is also
shown in Table 2. Since multiple genes per genome can
belong to a single gene family, there are fewer gene families
than genes per genome, but the difference is small for
Bifidobacterium. This indicates that there is little gene
redundancy in that genus. Lastly, the pan- and core
genomes of these genera (based on the analyzed genomes)
are quantified in Table 2. The plots resulting in these
running totals are shown in Fig. 1, where the average
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Table 1 Genomes selected for analysis

GPID Strain namea Size, bp or
Mb

%
CG

Contigs Number of
genes

Strain characteristics

82 Lactobacillus acidophilus NCFM 1,993,560 34.7 1 1,862 Commercial strain for yogurt, fluid milk production

404 Lactobacillus brevis ATCC 367 2,340,228 46.1 3 2,218 Starter culture for beer, sourdough, and silage

402 Lactobacillus casei ATCC 334 2,924,325 46.6 2 2,771 Starter culture for milk fermentation and flavour
development of cheese

30359 Lactobacillus casei BL23 3,079,196 46.3 1 3,044 Probiotic strain

46813 Lactobacillus crispatus ST1 2,043,161 36.9 1 2,024 Normal oral/vaginal flora, chicken isolate

16871 Lactobacillus delbrueckii bulgaricus
ATCC 11842

1,864,998 49.7 1 2,096 Yogurt

403 Lactobacillus delbrueckii bulgaricus
ATCC BAA-365

1,856,951 49.7 1 1,721 Thermophilic starter culture for yogurt, Swiss and
Italian-type cheeses

18979 Lactobacillus fermentum IFO 3956 2,098,685 51.5 1 1,843 Not specified

84 Lactobacillus gasseri ATCC 33323 1,894,360 35.3 1 1,755 Human isolate, type strain

17811 Lactobacillus helveticus DPC 4571 2,080,931 37.1 1 1,610 Cheese culture

36575 Lactobacillus johnsonii FI9785 1,785,116 34.4 1 1,737 Competitive exclusion strain in chicken

9638 Lactobacillus johnsonii NCC 533 1,992,676 34.6 1 1,821 Probiotic strain

32969 Lactobacillus plantarum JDM1 3,197,759 44.7 1 2,948 Probiotic strain

356 Lactobacillus plantarum WCFS1 3,348,625 44.4 4 3,101 Human saliva

15766 Lactobacillus reuteri DSM 20016 1,999,618 38.9 1 1,900 Type strain, human isolate

19011 Lactobacillus reuteri JCM 1112 2,039,414 38.9 1 1,820 Human isolate

32195 Lactobacillus rhamnosus GG 3,010,111 46.7 1 2,944 Probiotic strain

40637 Lactobacillus rhamnosus GG
ATCC53103

3,005,051 46.7 1 2,834 Human isolate

32197 Lactobacillus rhamnosus Lc 705 3,033,106 46.7 2 2,992 Probiotic strain

13435 Lactobacillus sakei sakei 23K 1,884,661 41.3 1 1,885 Fermenting

13280 Lactobacillus salivarius UCC118 2,133,977 33.0 4 2,014 Probiotic strain

18797 Lactococcus lactis cremoris MG1363 2,529,478 35.7 1 2,516 Plasmid-cured NCDO712, lab strain

401 Lactococcus lactis cremoris SK11 2,598,348 35.8 6 2,504 Cheese production

72 Lactococcus lactis lactis Il1403 2,365,589 35.3 1 2,266 Laboratory strain

41115 Lactococcus lactis lactis KF147 2,635,654 34.9 1 2,575 Fermenting, non-dairy

16062 Leuconostoc citreum KM20 1,896,614 38.9 5 1,823 Kimchi (food, Korea)

40837 Leuconostoc kimchii IMSNU11154 2,101,787 37.0 1 2,130 Kimchi? not specified

315 Leuconostoc mesenteroides
mesenteroides ATCC 8293

2,075,763 37.7 2 2,005 Food fermentation, not specified

70 Enterococcus faecalis V583 3,359,974 37.4 4 3,265 Clinical, blood isolate, vancomycin resistant

32949 Enterococcus faecalis T11 2,729,089 37.7 49 2,522 Urine isolate

32941 Enterococcus faecalis E1Sol 2,853,151 37.5 75 2,737 Faecal isolate, antibiotic-naïve, normal flora

20843 Enterococcus faecalis OG1RF 2,739,625 37.7 1 2,515 No info - lab strain?

32919 Enterococcus faecalis T3 2,821,089 37.6 40 2,603 Urine isolate

32927 Enterococcus gallinarum EG2 3,134,429 40.6 49 2,985 No info

32931 Enterococcus casseliflavus EC10 3,423,270 42.5 54 3,243 No info

32935 Enterococcus casseliflavus EC20 3,392,502 42.8 57 3,121 No info

46979 Enterococcus faecium PC4.1 2,811,160 37.9 78 2,705 Human microbiome, normal flora

32965 Enterococcus faecium Com12 2,685,402 38.1 67 2,573 No info

32967 Enterococcus faecium Com15 2,771,455 38.3 70 2,698 No info

330 Streptococcus agalactiae 2603V/R 2,160,267 35.6 1 2,124 Clinical isolate, common in adults

326 Streptococcus agalactiae A909 2,127,839 35.6 1 1,996 No info

334 Streptococcus agalactiae NEM316 2,211,485 35.6 1 2,134 Blood isolate

27849 Streptococcus dysgalactiae equisimilis
GGS 124

2,106,340 39.6 1 2,100 No info

34729 Streptococcus gallolyticus UCN34 2,350,911 37.6 1 2,261 Normally rumen flora, this is a clinical human isolate
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Table 1 (continued)

GPID Strain namea Size, bp or
Mb

%
CG

Contigs Number of
genes

Strain characteristics

from endocarditis

66 Streptococcus gordonii str. Challis CH1 2,196,662 40.5 1 2,051 Causes caries and periodontal diseases

20527 Streptococcus infantarius infantarius
ATCC BAA-102

1,925,087 37.6 22 1,962 Human microbiome project, normal flora

16302 Streptococcus mitis B6 2,146,611 40.0 1 2,018 Clinical isolate

28997 Streptococcus mutans NN2025 2,013,587 36.8 1 1,895 Normally oral flora, can cause caries, endocarditis.
Clinical isolate

333 Streptococcus mutans UA159 2,030,921 36.8 1 1,960 Oral flora, can cause caries, caries isolate

31233 Streptococcus pneumoniae ATCC
700669

2,221,315 39.5 1 2,135 Alternative name Spain 23FST81. Pandemic, high
prevalence, invasive

29047 Streptococcus pneumoniae G54 2,078,953 39.7 1 2,115 Resistant clinical isolate

277 Streptococcus pneumoniae TIGR4 2,160,842 39.7 1 2,125 Virulent clinical isolate

269 Streptococcus pyogenes M1 GAS SF370 1,852,441 38.5 1 1,696 Group A

16364 Streptococcus pyogenes MGAS10270 1,928,252 38.4 1 1,987 Sequenced for comparative genome analysis

286 Streptococcus pyogenes MGAS8232 1,895,017 38.5 1 1,845 Serotype M18

13942 Streptococcus sanguinis SK36 2,388,435 43.4 1 2,270 Indigenous oral bacteria, causes dental decay, oral
plaque isolate

17153 Streptococcus suis 05ZYH33 2,096,309 41.1 1 2,186 Causes disease in pigs and occasionally humans

32237 Streptococcus suis BM407 2,170,808 41.0 2 2,058 Human clinical isolate

18737 Streptococcus suis GZ1 2,038,034 41.4 1 1,978 Causes meningitis, arthritis, pneumonia in pigs
human epidemic in China

13163 Streptococcus thermophilus CNRZ1066 1,796,226 39.1 1 1,915 Isolated from yogurt for industrial dairy fermentations

13773 Streptococcus thermophilus LMD-9 1,864,178 39.1 3 1,716 Used in the manufacture of fermented dairy foods

13162 Streptococcus thermophilus LMG 18311 1,796,846 39.1 1 1,889 Isolated from yogurt for industrial dairy fermentations

16321 Bifidobacterium adolescentis ATCC
15703

2,089,645 59.2 1 1,631 Normal gut flora

19423 Bifidobacterium animalis lactis AD011 1,933,695 60.5 1 1,528 Normal gut flora

42883 Bifidobacterium animalis lactis BB-12 1,942,198 60.5 1 1,642 Normal gut flora

32897 Bifidobacterium animalis lactis Bl-04 1,938,709 60.5 1 1,567 Normal gut flora

32893 Bifidobacterium animalis lactis DSM
10140

1,938,483 60.5 1 1,566 Normal gut flora

32515 Bifidobacterium animalis lactis V9 1,944,050 60.4 1 1,572 Normal gut flora

28807 Bifidobacterium animalis lactis HN019 1,915,892 60.4 28 1,578 Normal gut flora

17583 Bifidobacterium dentium Bd1 2,636,367 58.5 1 2,129 Normal oral and gut flora, can cause caries, caries isolate

20555 Bifidobacterium dentium ATCC 27678 2,642,081 58.5 2 2,151 Human microbiome, faeces isolate

18773 Bifidobacterium longum DJO10A 2,389,526 60.2 3 2,003 Normal gut flora, probiotic

328 Bifidobacterium longum NCC2705 2,260,266 60.1 2 1,729 Normal gut flora, probiotic

17189 Bifidobacterium longum infantis ATCC
15697

2,832,748 59.9 1 2,416 Normal gut flora, probiotic

30065 Bifidobacterium longum infantis
CCUG 52486

2,453,376 60.2 55 2,085 Normal gut flora, human microbiome project

47579 Bifidobacterium longum longum JDM301 2,477,838 59.8 1 1,959 Normal gut flora, probiotic

29261 Bifidobacterium angulatum DSM 20098 2,007,108 59.4 17 1,586 Normal gut flora, type strain

30055 Bifidobacterium bifidum NCIMB 41171 2,186,140 62.8 33 1,810 Normal gut flora, probiotic

30749 Bifidobacterium catenulatum DSM
16992

2,058,429 56.1 31 1,720 Normal gut flora

30751 Bifidobacterium gallicum DSM 20093 2,019,802 57.5 27 1,580 Human microbiome project

30373 Bifidobacterium pseudocatenulatum
DSM 20438

2,304,808 56.3 36 1,870 Human microbiome project

a The official abbreviation ‘subsp.’ between species and subspecies name has been deleted throughout this contribution

GPID genome project identification number (NCBI: see http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi), NA not available

Comparative Genomics of Probiotic Bacteria 655

http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi


number of gene families present per genome is given as a
green line. In all graphs, the pan-genome and core genome
curves strongly diverge, indicative of a large variation in
gene content between the analyzed genomes within each
genus. The largest difference between the pan- and core
genome, as a measure for the variance within the analyzed
genera, is seen with Lactobacillus (21 genomes of 14
species) and Streptococcus (23 genomes of 12 species). The
variance is larger in four genomes of Lc. lactis than in three
different Leuconostoc species. Thus, intra-species variation
in gene content of Lc. lactis exceeds inter-species variation
of Leuconostoc, at least for these analyzed genomes.

The pan- and core genomes of pairwise genome
comparisons were also determined to establish the percent-
age identity for each combination. This identity was
expressed as the pairwise core genome divided by its pan-
genome and was visualized by colour intensity in a BLAST
Matrix. Figure 2 shows the BLAST Matrix for the
Lactobacillus genomes. The strongest green, indicative of
the highest fraction of genes found similar between two
genomes, are reported for comparisons within a species,
shown at the bottom of the figure. Some species also share
a large fraction of genes between them. For instance, the
two Lb. casei genomes share between 55.5% and 59.3% of
their genes with those of the three Lactobacillus rhamnosus
genomes (represented in the six darker green cells in the
upper part of the matrix). An even higher similarity (62.2–
62.8%) is found between Lb. gasseri and Lb. johnsonii. The
highest similarity recorded is 93.3%, between two Lb.
rhamnosus strains, and the lowest is 11.5%, between Lb.
casei BL23 and Lactobacillus delbrueckii bulgaricus
ATCCBAA-365.

A similar matrix is shown for Bifidobacterium in Fig. 3.
In this case, the similarity between the six Bifidobacterium
animalis genomes is obvious (visible as 15 strongly
coloured cells at the bottom right). Two of these genomes
reach a similarity of 95.5%. The lowest degree of similarity
is seen between Bifidobacterium gallicum and B. longum
infantis strain ATCC 15697 (28.5%).

When a BLAST Matrix was constructed with all genomes
included in the analysis, the similarity between Bifidobacte-
rium genomes and those of the other genera remained below
3%, illustrative of the difference of Bifidobacterium com-
pared to the Firmicutes (results not shown). Thus, despite
their sharing of an ecological niche, these bacteria share
relatively few genes. A comparison of all Firmicute genomes
is provided as Supplementary Fig. S1. As expected, the
found percentage identity within any of these genera is much
higher than that between genera. For instance, the three
Leuconostoc genomes produced a similarity of 49.5–52.3%
between them, but around 8% to 10% to genomes of other
genera. The four Lc. lactis genomes gave slightly higher
similarities of 16.1–18.4% to all other Firmicute genomes
whilst sharing 59.5–66.1% between themselves. An Entero-
coccus and a Streptococcus genome typically share 10% to
15% of their genes, and two genomes of Enterococcus and
Lactococcus 14% to 16%. Different Enterococcus species
share around 30% of their genes, but multiple genomes
within one species of this genus have around 70% of their
genes being similar.

Comparison of Core Genomes and Conserved Genes

The pan-genomes of all six genera were combined to calculate
the core genome shared by all genera. This resulted in only 63
core gene families out of a pan-genome of 37,053 gene
families, using the criteria of gene similarity as described in
the “Materials and Methods” section. These are listed in
Supplementary Table S1. Exclusion of the distinct Bifido-
bacterium genus retained 243 core gene families for the
Firmicute genomes that together produced a pan-genome of
30,615 gene families. Since these core genes are conserved
in all Firmicute genomes analyzed here, phylogenetic trees
could be generated and a consensus tree was generated, as
shown in Fig. 4. The consensus core gene tree split all
Lactobacillus genomes into three main clusters, though Lb.
salivarius is excluded from these groups. The cluster shown
at the top of the figure contains most Lactobacillus species

Table 2 Average findings per genus and their pan- and core genome

Genus Number of
genomes
included

Number
of
species

Average
genome size
(kbp)

Average
% CG

Average number of
genes (min–max
values)

Average number of gene
families (min–max values)

Pan-
genomea

Core
genomea

Lactobacillus 21 14 2,369 42.4 2,235 (1,562–3,059) 2,071 (1,437–2,873) 13,069 363

Lactococcus 4 1 2,532 35.4 2,465 (2,266–2,504) 2,238 (2,118–2,341) 3,389 1,522

Leuconostoc 3 3 2,025 37.9 1,986 (1,820–2,130) 1,896 (1,724–2,050) 2,927 1,164

Enterococcus 11 4 3,041 36.6 3,078 (2,573–2,515) 2,707 (2,439–3,114) 7,519 1,092

Streptococcus 23 12 1,981 38.9 2,018 (1,696–2,270) 1,923 (1,643–2,180) 9,785 638

Bifidobacterium 19 9 2,209 59.5 1,796 (1,528–2,416) 1,746 (1,497–2,287) 6,980 724

a Number of gene families is given
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with lower CG content, though it also includes L.
delbrueckii, whose CG content is quite a bit higher. This
clustering, based on these core genes, corroborates the inter-
strain similarities already reported for their complete
genomes, as shown in Fig. 2. The Streptococcus genus is
separated into two large clusters in Fig. 4. Two clusters are
also observed for the Enterococcus species, while Lactococ-
cus is placed outside all other genera.

A more commonly used procedure is to compare only
a small subset of core genes. In population biology,

MLST of six or seven core gene fragments is frequently
used to assess evolutionary distances between isolates
within a species. MLST analysis is based on DNA
sequences. We adapted this approach to perform in silico
MLST for all isolates within a genus, as a measure for
evolutionary distance of core genes, and used this for
analysis of three genera. Unfortunately, despite the
reputation of MLST as being generally applicable and
despite a considerable number of gene families being
conserved even between Firmicutes and Bifidobacteria
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Figure 1 Pan- and core genome plots of the six analyzed genera. The genomes were analyzed in alphabetical order of species names
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(63 gene families), different MLST target gene sets have
been proposed for various species, and most of these are
not conserved between all species (Supplementary
Table S1). In order to compare our findings with
published data, we have used fragments of various genes
depending on the genus, as suggested in the literature.

For in silico MLST analysis of Bifidobacterium, 7
gene fragments were extracted according to Delétoile and
co-workers [6], as these happened to be conserved in all
19 Bifidobacterium genomes analyzed here. A phyloge-
netic tree of the extracted and concatenated MLST frag-
ments is shown in Fig. 5. Although MLST was not
designed for this purpose, the results show that this
approach can reveal phylogenetic relationship of these
core genes between species within a genus. All multiple
isolates per species are correctly clustered, although
subspecies are not correctly grouped (see the position
of B. longum longum and B. longum infantis). Three
major clusters can be recognized, separated in the figure
by green lines. These findings are in accordance to the
three groups within this genus recognized by Lee and
O’Sullivan [17], based on an extensive 16S ribosomal
RNA gene analysis.

The MLST website (http://www.mlst.net) lists two
different gene sets to be used for Enterococci. Figure 5

(right side) shows the results obtained with each. Both trees
produce little resolution within the species, especially when
compared with the consensus tree based on 243 core genes
in the previous figure.

For Lactobacilli, four MLSTschemes are available: one for
L. plantarum [4], two for Lb. casei ([1], http://www.pasteur.
fr) and one for L. sanfranciscensis [20], which is not
represented in our dataset. The first three MLST schemes
were tested, which produced different trees (Supplementary
Fig. S2). All three trees clustered multiple strains per species,
but the branch positions of these species varied according to
the gene set used. It cannot be stated which MLST tree is
‘correct’ as they all display the evolutionary relationship of
the genes analyzed in question—but obviously, the phylog-
eny of core genes is not always conserved within a genome,
as it is affected by recombination. This is also visible from
the numbers of core genes producing consensus branches in
Fig. 4. With this variation in mind, an MLST tree should be
interpreted with caution, as it represents only a tiny fraction
of the complete core genome of a strain.

Comparison of Variable Gene Content

The pan-genome of a species or genus comprises both
conserved core and variable genes. The latter can also be
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used to establish inter-genome relationships, although not
by phylogeny. Instead, clustering of presence or absence of
variable genes can be performed [24]. This method
calculates Manhattan distances for genes variably present.
Obviously, core genes and genes found present in only one
genome were excluded from this analysis, as they cannot
identify any correlation between genomes. Thus, only genes
whose presence varies, found at least in two genomes but
absent in at least one genome, are assessed. The resulting
clustering is not a phylogenetic tree, since it is not based on
phylogeny of individual genes. Instead, it shows which
genomes share more of their variable genes than others.

Figure 6 shows the hierarchical clustering of the Bifido-
bacterium genomes based on their variable gene content. As
can be seen, genomes of identical species cluster together
and are separated from different species, but the subspecies
of B. longum are not correctly separated. Since their variable
gene content seems to be mixed, this suggests that these two
subspecies share the same gene pool for horizontal gene
transfer events. The similarity, in terms of variable gene
content, between the two species B. catenulatum and B.
pseudocatenulatum is not more than that between various B.
longum subspecies. A deep division splits B. animalis
combined with B. gallicum from the others, which correlates
with the MLST tree shown in Fig. 5.

The analysis of variable gene content can simultaneously
be performed with genomes of varying similarity, so that
Fig. 6b combines all Firmicute genomes. The 21 Lactoba-
cillus genomes are split into two major groups, which match
a deep branch in the phylogenetic tree of 16S rRNA genes
of this genus [2]. However, the clustering based on variable
gene content produces a different picture to the consensus
tree based on core genes (compare Figs. 4 and 6b). This
probably reflects different evolutionary forces at play. Genes
whose presence is variable may be located on mobile
elements or may be more frequently subjected to DNA
recombination than core genes. The three Leuconostoc
genomes are placed within the Lactobacillus genus; appar-
ently, these share a considerable number of variable genes.

The three major clusters within the Streptococcus genus
visible in Fig. 6 largely match their taxonomic relationship
as defined by 16S rRNA [8], although the distance between
S. thermophilus and Streptococcus infantarius, which are
both part of the ‘Salivarius group Streptococci’, is better
captured by variable gene content than by 16S rRNA
phylogeny. The discrepancy between this clustering and the
consensus core gene tree is even more extensive for this
genus.

The four Lc. lactis genomes are placed between
Streptococcus and Enterococcus, which reminds of their
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inclusion, prior to the 1980s, into the single genus Strepto-
coccus [25]. Within the genus Enterococcus, the clustering in
Fig. 6 separates each of the analyzed species and confirms
that Enterococcus casseliflavus and Enterococcus gallinarum
are more related to E. faecium than to E. faecalis.

Visualization of Conserved and Variable Gene Content

Conservation and variation in gene content between
genomes can also be visualized by a BLAST Atlas [12],
which contains information on gene location as well as on
gene presence, at least for the reference genome on which a

BLAST Atlas is based. Two different Bifidobacterium
reference genomes were used in the two BLAST Atlases
shown in Fig. 7 to which all other Bifidobacterium
genomes were compared. Only genes present in the
reference genome are captured in these atlases as these are
used as query, for which the hits in the other genomes are
recorded as colour in the BLAST lanes. The more strongly
a protein gene is conserved, the more intense the colour is.
Different colours are used to separate the different species,
and these colours have been kept constant between the two
panels, so that it is obvious that genes are mostly conserved
within a species. The most inner BLAST lane included in
Fig. 7 is that of the reference genome against itself. This
shows the maximum colour that can be obtained for each
location. Gaps in this ‘Blast-to-self’ lane where BLAST
hits are absent, for instance around 1,700 kb, are due to
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non-translated genes such as ribosomal RNA copies. In
Fig. 7a, a large region around 350–400 kb appears to
produce a gap of non-conserved genes in most Bifidobac-
terium genomes, with the exception of B. longum infantis
CCUG 52486 and B. longum DJO10A. This represents a
region with variable genes within the B. longum genomes
(the red lanes in the atlas), which are completely absent in
the other Bifidobacterium genomes. Other than that, there
appears to be relatively little variation between the B.
longum genomes. Strong conservation within the species is
also observed for B. animalis when used as the reference, as
shown in Fig. 7b. In that lower panel, the B. animalis lanes
are far more darkly coloured than in the top panel, whereas
the B. longum lanes are lighter in colour, illustrating that
stronger homology is identified within a species than across
species. Note that the large gap of the top atlas is no longer
visible now, as the genes that were found in B. longum are
absent in B. animalis and thus are no longer captured when
the latter is used as a reference. Taken together, these data
suggest that there is relatively strong conservation within a
species of Bifidobacterium, an observation that has been
made by others as well [30].

Figure 8 shows two BLAST Atlases of the Lactobacillus
genomes. There appears to be considerably less conserva-
tion between species of this genus compared to Bifidobac-
terium. Even within the species of the two reference
genomes of both panels, there are multiple gaps. This
reflects the higher genetic diversity of the Lactobacillus
genus compared to Bifidobacterium.

A BLAST Atlas of Streptococcus genomes with S.
thermophilus LMD-9 as the reference is provided as
Supplementary Fig. S3. Two non-pathogenic E. faecalis
genomes were included as well, since these are normal
human flora strains and could be considered to share a
similar niche to S. thermophilus, at least when colonizing
the human gut. There is quite a bit of variation in protein-
coding genes between the three S. thermophilus genomes,
and as expected, there is even fewer conservation in other
species of Streptococcus or in the two E. faecalis genomes.
Apparently, similarity in bacterial lifestyle is not necessarily
represented by a significant homology in gene content.

COG Comparison of Pan- and Core Genomes

So far, conservation of genes was assessed and reported
irrespective of their function, but that information is
essential for a biological interpretation. The function of
genes is not always known, but a large number of proteins
have been assigned to a functional category of orthologous
group, based on inference of sequence similarity to
functionally characterized proteins. We have extracted the
top-level COG groups for the genomes of interest and, in a
first step, compared their core and pan-genomes genes. An

example of such a statistical analysis for Bifidobacterium is
shown in Fig. 9. At the bottom, the legend specifies the 3
top-level COG categories: ‘information storage and pro-
cessing’, ‘cellular processes and signaling’ and ‘metabo-
lism’, which are divided into 18 groups. The pie charts
show what the fraction of the complete pan-genome genes
of Bifidobacterium (left) or of the conserved core genes
(right) belongs to each COG group. As expected, genes for
which a function is not precise or not at all predicted build a
significant fraction in the pan-genome, but these are mostly
removed from the core genes, as their presence varies.
More surprisingly, the three top categories are more or less
similarly distributed in the two pie charts (thereby ignoring
the contribution of the grey and black fractions), with a
slight overrepresentation only of the information storage
genes in the core genome compared to the pan-genome.
Within these three broad categories, however, differences
are visible when comparing the pan-genome or the core
genome of these Bifidobacterium genomes. For instance,
within ‘information storage and processing’, class J
(translation, ribosomal structure and biogenesis) is enriched
in the core genome, at the expense of K and L (transcription
and replication, respectively). This means that the gene
content related to these latter information storage processes
is more variable and is hence captured in the pan-genome
but less so in the core genome than the genes related to
translation and ribosome biogenesis. Of interest is also the
shift within the group ‘metabolism’ between classes E and G
(for amino acid and carbohydrate transport/metabolism,
respectively). The results indicate that the gene content for
metabolism of amino acids is more conserved than that for
carbohydrates, at least between these Bifidobacterium
genomes. Lastly, enrichment in the core genome of class
O, for post-translational modification and chaperones, is
apparent within the group ‘cellular processes and signaling’.

The Bifidobacterium findings can be compared to those
of Lactobacillus, shown at the top of Fig. 10. The
distribution of the three top-level COG categories in the
pan-genome of Lactobacillus is different to that of
Bifidobacterium, with more information storage and fewer
metabolism genes. This is more obvious from Table 3,
which lists the relative fractions of these COG classes when
the grey and black fractions are ignored. For the core genes
of Lactobacillus, the relative increase (compared to its pan-
genome) in the fraction of information, storage and
processing genes, at the expense of metabolism genes, is
far more pronounced than for Bifidobacterium. Within the
information and storage group, the enrichment of class J
genes in the core genome of Lactobacillus is also stronger
than reported for Bifidobacterium.

Figure 10 also shows the plots for Lactococcus (middle)
and Leuconostoc (bottom). Although these last two genera
are represented by four and three genomes only, all pan-
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genomes look surprisingly similar. However, when concen-
trating on the functionally annotated genes only (Table 3),
some differences become apparent. The core genes of
Lactococcus and Leuconostoc display a similar distribution
of the three major COG classes as Bifidobacterium (which
is taxonomically removed) that is different to the core
genome of Lactobacillus, to which they are much closer
related. Note that, in their pan-genomes, these three COG
groups are similarly divided in Bifidobacterium and
Lactobacillus. The shifts observed between pan-genome
and core genome within a genus are contrasting between
Lactobacillus and Lactococcus, whereas there is hardly a
shift for Leuconostoc. From Fig. 10, it can be seen that, in
the pan-genome of Lactococcus, class L genes make up a
relatively large proportion. Within the metabolic gene
classes, for Lactobacillus, a strong enrichment of nucleotide
metabolism genes (class F) is observed in the core genes,
whereas genes related to amino acid metabolism (class E)
are more favoured in the core genome of Lactococcus. A
significant increase in the core genes of COG class O (post-
translational modification and chaperones) is observed for
all analyzed genera. This could be an indication of the
importance for such genes in the natural habitat of these gut
bacteria.

The COG distribution plots for the pan-genome genes
and the core genes of Enterococcus and Streptococcus is
provided as Supplementary Fig. S4; the percentages of the
three functionally classified COG top levels are included in
Table 3. In contrast to the above examples, these two
genera contain both pathogenic and non-pathogenic iso-
lates. As in the previous examples, the large fraction of
genes with unknown function is minimized in the core
genome, but for both genera. Metabolism genes are neither
over- nor underrepresented in the core genome. As before, a
strong conservation of genes of COG class J (translation,
ribosomal structure and biogenesis) was observed. Carbo-
hydrate transport and metabolism genes (class G) were
more frequently found in the Enterococcus pan-genome
than in the Streptococcus pan-genome, though this was less
pronounced for their core genomes.

In an attempt to correlate findings with the presence or
absence of pathogenicity, all genomes of pathogenic
isolates (irrespective of their genus) were combined to
collectively compare these with the non-pathogens (pro-
biotic, fermentative and normal gut flora organisms)
combined. The pathogenic group consisted of Enterococcus
and Streptococcus genomes only, whilst the non-pathogenic

group contained genomes of all genera analyzed. The COG
analysis was then repeated for these two phenotypic
collections, whereby the pan- and core genomes obviously
were recalculated. The pathogenic collection had a pan-
genome of 14,209 gene families and a core genome of 508.
The pan-genome of the non-pathogenic collection was
significantly larger (21,087), and this group produced a
core genome of only 278 gene families. The results of the
COG analysis are shown in Fig. 11. Surprisingly, the two
pan-genome statistics look nearly identical, despite the
obvious phenotypic differences between these two groups
that both consist of diverse organisms, with a skewed genus
distribution. However, the COG distribution between the
two core genomes differs dramatically. The fraction of
genes for which no homologue could be identified has
(nearly) disappeared from the core genome of the non-
pathogenic group, but a significant fraction of these genes
was retained in the core genome of pathogens. The top
level of metabolism genes has decreased in both core
genomes, but more so in the group of the non-pathogens.
Thus, the core genes of the non-pathogenic isolates are
more frequently information storage genes and less likely
metabolism genes than the core genes of pathogens
(Table 4). Zooming in on shifts in single categories between
pan- and core genomes, the enrichment of core genes
belonging to class J, already observed for all single genus
plots shown above, is even more extensive and far more
extreme with the collection of non-pathogenic organisms.
An enrichment for class O (post-translational modification
and chaperones) within the top-level ‘metabolism’ is
pronounced in the core genome of both groups, but the
pathogens also show enrichment of class M genes (cell
wall/membrane biogenesis) which is actually reduced in the
core genome of non-pathogens.

Discussion

The comparative analysis presented here of 81 bacterial
genomes, covering 6 genera and 43 different species,
could be performed by grouping their genes into gene
families and comparing core and pan-genomes of various
subsets of genomes. The findings frequently confirmed
taxonomic relationships but could not identify common
signatures, in terms of gene content, for all non-
pathogenic bacteria included in the analysis. This finding
is surprising, as all these species occupy a similar niche.
Conserved genes were compared by means of a consen-
sus tree, while genes variably present were analyzed by
cluster analysis. The latter indicated that Leuconostoc
genomes share a considerable number of variable genes
with Lactobacillus. Functional analysis of the proteins
coded by the genes comprising a genus’ core genome

Figure 7 Blast Atlas of Bifidobacterium genomes with B. longum
strain NCC2705 (top) and B. animalis lactis strain V8 (bottom) as the
reference. To the right, the BLAST lanes for each atlas are listed. The
four circles inwards of the annotation lane of the reference genome
represent stacking energy, position preference, global direct repeats
and GC skew (from out to in)

R
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identified the relative strong conservation of information
storage genes; this was observed for all genera analyzed.
When all genomes were divided into a pathogenic and a

non-pathogenic group, the pan-genome of both groups
showed a surprisingly similar COG distribution; however,
their core genome differed considerably. It was observed
that, in the core genome of non-pathogenic genomes,
genes for post-translational modification and chaperones
were enriched.

Figure 8 BLAST Atlas of Lactobacillus with L. rhamnosus strain
Lc705 (top) and Lb. johnsonii strain NCC533 (bottom) as the
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A simultaneous comparison of the pan- and core
genomes of publicly available genomes of Lactobacillus,
Lactococcus, Leuconostoc, Enterococcus, Streptococcus
and Bifidobacterium, as was performed here, has not been
published before, but similar analyses have been published
for smaller selections of organisms. Canchaya and co-
workers [2] performed comparative genomics of the then
five available Lactobacillus genomes from different species
and commented on the high variability within this genus.
Schleifer and Ludwig [23] stated that “It is widely
recognized that the taxonomy of this genus is unsatisfactory
due to the highly heterogeneous nature of its members”.
Indeed, data presented here illustrate the diversity within
Lactobacillus. However, the heterogeneity of this genus is
not larger than that of other bacteria. Using the same
comparison criteria as applied here, the pan-genome of 53
E. coli genomes was found to comprise 13,000 gene
families, even within this single species [18]. Similarly, an
analysis of 27 genomes from 7 Vibrio species produced a
pan-genome of nearly 15,000 gene families for this genus
[31], and 38 genomes of 5 Burkholderia species contained
as much as 26,000 gene families [28]. Thus, the diversity in
gene content within the genus Lactobacillus, based on the
genome sequences currently available, is not exceptional in
the bacterial world.

Our analyses are mainly based on core genomes, an
approach that others followed as well [2]. Those authors
had defined a core genome for Lactobacillus whose size is
similar to our findings. However, the fraction of identified
orthologous genes in the pairwise comparisons performed
by those authors range from 52.3% to 68.9%, which is
much higher than our findings of between 12% and 42%,
shown in the BLAST Matrix of Fig. 2. The difference may
be due to the way these percentages were calculated.
Whereas we express these as the fraction of gene families
found in the reciprocal pan-genome of the pair of analyzed
genomes, their calculations are different, and they do not

state the cut-off used to recognize orthologous genes as
such. In view of their limited reported range, we believe our
way of expressing pairwise homology is more useful, as it
gives a more sensitive measure. In a subsequent publica-
tion, comparative genomics was performed with a larger set
of 12 Lactobacillus genomes [3]. Inclusion of 7 more
genomes reduced their core genome to 141 genes which
indicates they used more strict criteria of inclusion than the
50–50 rule we applied. Similar to our analysis, these
authors compared the COG classes of the core genes they
had identified, and their findings also reported the largest
class represented to be genes involved in translation,
followed by replication.

Comparative genomics of both Lactobacillus and
Bifidobacterium was presented in a review [30], which
mentioned the ability of Bifidobacterium to “synthesize at
least 19 amino acids and (…) all of the enzymes that are
needed for the biosynthesis of pyrimidine and purine
nucleotides”. These authors further emphasized the im-
portance of carbohydrate metabolism for Bifidobacterium
with its capability to degrade complex sugars. Indeed, top-
level metabolism genes form a major part of the
Bifidobacterium core genome (Fig. 9) with class E (amino
acid metabolism) as the largest fraction within that
category. When we compare this core genome with that
of Lactobacillus (Fig. 10), our analysis shows that class F
genes (nucleotide metabolism) comprise the largest me-
tabolism gene fraction in the Lactobacillus core genome.
Ventura and co-workers [30] used a known physiological
characteristic (Bifidobacterium species are known for their
prototrophy) and looked for evidence of this in the
genomes. In contrast, we have done a neutral analysis of
pan- and core genome COG class representation and then
compared this between genera. Our approach reveals
novel insights that would remain unnoticed when known
phenotypes are taken as a start, for instance the conserva-
tion of COG class O genes, involved in post-translational
modification and chaperones, in both of these genera.

The authors of a recent review on Bifidobacterium
genomics [17] pointed out that most Bifidobacterium

Figure 10 COG distribution of pan-genome genes (left) and core
genes (right) for Lactobacillus (top), Lactococcus (middle) and
Leuconostoc (bottom)

�

Table 3 Relative fractions of COG groups within the functionally annotated genes for the six genera

COG groups Bifidobacterium Lactobacillus Lactococcus Leuconostoc Enterococcus Streptococcus

Pan
(%)

Core
(%)

Pan
(%)

Core
(%)

Pan
(%)

Core
(%)

Pan
(%)

Core
(%)

Pan
(%)

Core
(%)

Pan
(%)

Core
(%)

Information storage 30.0 33.9 34.0 49.1 ↑↑ 50.5 30.4 ↓↓ 28.1 31.0 26.6 33.8 ↑ 34.7 42.6 ↑↑

Cellular process,
signalling

21.9 20.2 22.7 20.3 17.1 19.1 19.1 20.0 24.4 18.9 ↓ 26.3 20.3 ↓

Metabolism 48.1 45.9 44.3 30.6 ↓↓ 32.2 50.6 ↑↑ 52.7 49.1 50.0 47.8 39.2 36.9

All percentages are expressed as the fraction of all COG classes C to V. The arrows indicate significant shifts between the pan-genome genes and
core genes for a given genus. Percentages do not always add up to 100% due to rounding effects
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Table 4 Relative fractions of
COG groups within the func-
tionally annotated genes for
non-pathogens/pathogens. The
arrows indicate how the reported
percentages increase or decrease
in the core genome compared to
the pan genome.

COG groups Non-pathogens Pathogens

Pan (%) Core (%) Pan (%) Core (%)

Information storage 33.5 64.4 ↑↑ 29.3 42.4 ↑↑

Cell. process, signalling 22.0 16.6 ↓ 25.7 18.9 ↓

Metabolism 44.5 20.2 ↓↓ 44.9 38.7 ↓
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genomes have been sequenced from organisms that have a
long history of culture outside their natural habitat, the gut,
with the exception of B. longum DJO10A. There is good
evidence that the genome of Bifidobacterium is subject to
gene reduction to adapt to prolonged culture conditions.
This could potentially bias our comparative analysis of
Bifidobacterium genomes with that of the other probiotic
organisms.

The term ‘lactic acid bacteria’ is commonly used to
describe bacteria used as starter cultures and fermentation
of foodstuffs. LAB can refer to species from the genera
Lactobacillus, Lactococcus, Leuconostoc, Streptococcus,
Enterococcus, Pediococcus or all of the Lactobacillales,
and sometimes includes Bifidobacterium as well. Howev-
er, there are good reasons why these bacteria have been
placed into different genera and phyla. The analyses
presented here support their current taxonomic positions
and stress their differences in gene content. The term LAB
incorrectly suggests all these organisms are somehow
related; a view that is still being presented in the literature
[15]. The use of the term LAB is a bit misleading, as the
genetic content from these various genera differ signifi-
cantly. Moreover, some of the genera within LAB
comprise only non-pathogenic species (Leuconostoc,
Bifidobacterium, Lactobacillus), whereas other genera
are a mixture of pathogenic and non-pathogenic species
and strains (Streptococcus, Enterococcus). It would be
better to refrain from the term LAB as there is no common
denominator, other than the production of lactic acid
(which is not restricted to these organisms) to collectively
describe all species and strains supposedly included in this
diverse group of organisms.

An extensive comparative study of Enterococcus
genomes could not be identified from the literature. Most
studies concentrate on pathogenicity of E. faecalis. Vebø
and co-workers [29] compared probiotic and (uro-)patho-
genic E. faecalis genomes; however, those comparisons
were not based on sequence data. The Enterococcus
genomes we have included were mostly from pathogenic
organisms (only two non-pathogenic E. faecalis strains
whose sequences were nearing completion were publicly
available at the time of analysis), which limits the strength
of this analysis, as it cannot be used to compare and
contrast multiple non-pathogenic with pathogenic Entero-
coccus genomes. The 11 genomes included represent only 4
species, giving a pan-genome of nearly 8,000 gene families.
The first four species of Lactobacillus or Streptococcus
genomes in the pan-genome plots of Fig. 1 produce smaller
pan-genomes, which could suggest that the diversity of
Enterococcus could be at least as extensive as that of
Lactobacillus. The pairwise BLAST comparison within this
genus resulted in homologues varying from 24% to 84%,
again indicating extensive intra-genus diversity.

Streptococcus and Enterococcus are frequently consid-
ered as closely related, but the BLAST Matrix comparing
all included genomes (Supplementary Fig. S1) does not
support this. Instead, somewhat surprisingly, the observed
homology between Leuconostoc and Streptococcus
genomes is slightly higher than that between Streptococcus
and Enterococcus. On the other hand, Lc. lactis was
positioned in between these two genera in the tree based
on variable gene content. A shared gene pool between these
genera can be hypothesized. Based on the conserved core
genes, however, Enteroccus is more related to Streptococ-
cus, while Lactococcus is more distinct.

A small comparative study of Streptococcus genomes
combined with MLST suggested that S. thermophilus is a
relatively young clone, evolved by genome reduction which
removed or inactivated Streptococcus virulence genes [13].
It is possible, however, that the reduced genomes observed
are the result of prolonged use as starter cultures, as no
fresh human isolates have been sequenced to date. In a
short review, Delorme [5] states that “S. thermophilus is
related to Lactococcus lactis…”. Indeed, from the all-
against-all BLAST Matrix, a similarity between 17.3% and
20.2% is recorded between genomes of these two species,
which is higher than that between S. thermophilus and any
other non-streptococcal genome. However, Lc. lactis also
shares 16.0% to 18.0% of reciprocal genes with S. suis, so
these overlapping percentages of gene similarity are no
indicator of similarity in (probiotic) phenotype. Within the
Streptococcus genus, the stated similarity of S. thermophi-
lus with Streptococcus sanguinis (the only member of the
viridans group for which a genome sequence is available) is
confirmed in our Matrix, but an even higher similarity is
found with Streptococcu gordonii.

The COG analysis of the core genomes of separate
genera identified both similarities and differences. The
three top-level functional COG groups are relatively
equally divided over the functionally annotated pan-
genes of all species, but their core genomes differ.
Notably, Lactobacillus and Leuconostoc both have a
smaller fraction of metabolism core genes than the other
four genera and a larger information storage gene fraction.
Information storage genes are essential, but redundancy
allows so much variation between organisms that they are
not all maintained in a core genome of diverse species. In
the approach presented here, we first identified the core
genomes of groups of bacteria and then sorted the genes in
these core genomes for top-level COG categories. As a
consequence, genes that were insufficiently conserved
based on sequence similarity to be maintained in the core
genome are removed despite their possible functional
conservation. Using this approach, we found no correla-
tion between the diversity within a genus (using the
difference of their pan- and core genome as a measure)
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and the fraction of their information/storage COG genes.
This lack of correlation is illustrated by the core genome of
Bifidobacterium (724, or 10% of its pan-genome) and
Leuconostoc (1,164, or 40% of its pan-genome). These two
core genomes contain 34% and 31% information/storage
genes, respectively, despite a huge difference in the degree of
variation in these two genera.

Of particular interest is the COG analysis where all
genomes were divided into a pathogenic and a non-
pathogenic group. Virulence genes are not a separate COG
category, but from the comparison of the core genomes of the
pathogenic group with that of the non-pathogenic group, we
can hypothesize that genes belonging to COG categories M
(cell wall/membrane biosynthesis) and O (post-translational
modification, chaperones) would mostly contribute to viru-
lence. Conversely, it could be assumed that genes highly
overrepresented in the core genome of the non-pathogenic
group (compared to the core genome of the pathogenic group)
most likely contribute to their probiotic or fermentative
lifestyle. We observe enrichment for genes belonging to
COG class J (translation, ribosomal structure and biogenesis)
and again O (post-translational modification and chaperones).
The finding that core genes of the non-pathogenic isolates are
more frequently information storage genes and less likely
metabolic genes than the core genes of pathogens is counter-
intuitive. It is generally accepted that commensals and
probiotic strains are most adequately equipped to live in
the intestine, which would assume they share a large
number of (conserved) metabolic genes to do so. Instead,
the reduced metabolism gene fraction in their core
genome suggests that there is a large variation within
these genes, which reflects the diversity of the various
commensals, fermentative and probiotic isolates. The
vast enrichment for information/storage genes in the core
genome of the non-pathogenic organisms is possibly a
reflection of the relative poor conservation of all other
functional classes in this group, an effect that appears to
be less pronounced in the (ecologically more diverse)
pathogenic group. The fact that Bifidobacterium are not
present in the pathogenic group may have skewed these
results slightly. A more accurate prediction for conserved
genes with an important role in bacteria with a non-
pathogenic lifestyle may become possible in the future,
when more non-pathogenic Enterococcus genomes be-
come available, which allows comparison of gene content
within a genus or even species.

Conclusions

This study illustrates the value of comparative genomics of
multiple genomes within and between related species and
genera. The applied tools are relatively simple to analyze a

vast number of genes, and the results can support or
contradict existing hypotheses and taxonomic divisions, as
well as generate novel hypotheses. We believe the data
presented here can assist in understanding the commensal
and probiotic relationship of bacteria with their human host.
The work presented here demonstrates that the used
analyses can be applied to large numbers of genomes,
when searching for general mechanisms to predict trends
even across genera. The presented analyses can be taken as
a test case for comparison of multiple genomes from a
largely variable dataset.
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