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Abstract Functional metagenomics, the study of the collec-
tive genome of a microbial community by expressing it in
a foreign host, is an emerging field in biotechnology.
Over the past years, the possibility of novel product
discovery through metagenomics has developed rapidly.
Thus, metagenomics has been heralded as a promising
mining strategy of resources for the biotechnological and
pharmaceutical industry. However, in spite of innovative
work in the field of functional genomics in recent years,
yields from function-based metagenomics studies still fall
short of producing significant amounts of new products
that are valuable for biotechnological processes. Thus, a
new set of strategies is required with respect to fostering
gene expression in comparison to the traditional work.
These new strategies should address a major issue, that
is, how to successfully express a set of unknown genes
of unknown origin in a foreign host in high throughput. This
article is an opinionating review of functional metagenomic
screening of natural microbial communities, with a focus on
the optimization of new product discovery. It first summarizes
current major bottlenecks in functional metagenomics
and then provides an overview of the general metagenomic
assessment strategies, with a focus on the challenges that
are met in the screening for, and selection of, target
genes in metagenomic libraries. To identify possible
screening limitations, strategies to achieve optimal gene
expression are reviewed, examining the molecular events
all the way from the transcription level through to the
secretion of the target gene product.
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Introduction

One of the major hurdles in microbial ecology is the inability
to culture most of the microbial diversity present in ecosys-
tems under laboratory conditions. The observed divergence
between the numbers of bacterial cells forming colonies on
plates and the cell count obtained bymicroscopic examination
is known as “the great plate count anomaly” (Staley and
Konopka 1985). In fact, only a fraction of the microbial
diversity present in most ecosystems (1–5%) can be accessed
through standard cultivation techniques (Curtis and Sloan
2004; Nichols 2007; Staley and Konopka 1985; Torsvik and
Øvreås 2002). Thus, we can only speculate about the
environmental importance and economical value of the
majority of organisms that have remained unexplored so
far. To access and explore this hitherto unexplored microbiota,
the genetic material of the collective cells from an environ-
mental sample can be directly extracted. This microbial
community DNA, also known as the metagenome, can be
further analyzed using modern technologies such as
screens of constructed expression libraries and direct
high-throughput sequencing. The molecular analysis
strategies used to examine microbial metagenomes have
been denoted as metagenomics techniques. Metagenomics
has come a long way since the term was first introduced by
Handelsman et al. (1998). Recently, the enormous potential
of metagenomics to promote both bioexploration and our
understanding of ecosystems has become clear (Hil and
Fenical 2010; Imhoff et al. 2011; Lefevre et al. 2008;
Mocali and Benedetti 2010; Riesenfeld et al. 2004; Singh
and Macdonald 2010; Warnecke and Hess 2009). Clearly,
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the screening of metagenomic libraries allows one to
study genes and functions from previously inaccessible
microbes, opening up exiting new possibilities for the
development of novel products (Fernández-Arrojo et al.
2010; Singh et al. 2008; Uchiyama and Miyazaki 2009;
Warnecke et al. 2007).

Screens of metagenomic libraries have been performed
by two fundamentally different strategies, i.e., using (1) a
function-based approach and (2) a sequence-based approach
(Kakirde et al. 2010; Schloss and Handelsman 2003). In
the first strategy, screening is based on the detection of
expression of target genes in the cloning host. In the
second one, the focus is on the detection of target genetic
sequences, for instance, by hybridization or PCR screening.
An alternative is offered by direct sequencing.

Despite the potential for mining of genetic novelty, the
yields from function-based metagenomic studies often
fall short of yielding products with sufficient novelty
for biotechnological processes (Beloqui et al 2008; Hil
and Fenical 2010; Singh and Macdonald 2010). One key
reason for this is likely an often low level of gene
expression in the library host (Van Elsas et al. 2008a).
Alternatively, the screening method may have too low
sensitivity to make gene expression easily detectable
(Gabor et al. 2004). An additional caveat is the frequent
rediscovery of already known functions, which limits the
success of the metagenomics approach (Binga et al.
2008). The first two limitations appear to exacerbate the
apparent inaccessibility of the extant genetic diversity
through functional metagenomics (Lefevre et al. 2008).
Considering this, we here pose the question “is there
such a thing as a great screen anomaly”? If so, what
strategies could be developed to solve this problem? Bluntly
speaking, the central question underlying the success of
metagenomics-based explorations of natural microbial
communities is: “How to express a large number of genes of
unknown origin at high throughput and successfully screen
for specific functions?”

This review aims to discuss the major bottlenecks that
pertain to function-based metagenomics of the microbiota in
natural systems for bioexploration. By reviewing the
status of functional metagenomics, an overview will be
given of the most important aspects of currently employed
exploration of such microbial systems, and strategies for
future improvements are given. Figure 1 depicts the general
outline of microbial metagenomics.

Sample selection and pretreatments

Metagenomic libraries have already been constructed from a
broad range of environments to access the genetic potential
of the microbial communities present. The studies have

included soil (Brennerova et al. 2009; Fan et al. 2011; Jiang
et al. 2011; Lämmle et al 2007; Van Elsas et al 2008a),
sediment (Jeon et al. 2009; Parsley et al. 2010; Zanaroli et al.
2010), freshwater (Wexler et al. 2005), marine environments
(Breitbart et al. 2002; Martin-Cuadrado et al. 2007; Venter et
al. 2004), and the guts of animals (Bao et al. 2011; Li et al.
2008; Wang et al. 2011). Also, extreme environments such as
the Arctic (Jeon et al. 2009), glacial ice (Simon et al. 2009),
acidic (Morohoshi et al. 2011; Tyson et al. 2004), and
hypersaline environments (Ferrer et al. 2005) as well as a
hyperthermal pond (Rhee et al. 2005) have been addressed by
metagenomics-based studies. Extreme environments are of
obvious interest in the search for novel enzymatic activities
and properties.

Clearly, the success of metagenomics exploration of
microbial communities will be dependent on the make-up
of these in each environment, as well as on the specifics
of the environment being investigated. For instance, in
cases where particular catabolic functions are sought,
screening based on the utilization of specific substrates has
been proposed (Brennerova et al. 2009; De Vasconcellos et al.
2010; Tirawongsaroj et al. 2008).

To enhance the chances of finding useful target functions,
ecological enhancement (also called habitat biasing) has
been proposed in order to manipulate the local microbial
community prior to the extraction of the metagenomic
DNA. Thus, the prevalence of the target functions in the
total extracted metagenome is increased in situ, and so is the
target gene hit rate. In practical terms, an environmental
sample is biased towards specific groups of organisms by
adding substrates or modifying its physicochemical condi-
tions (Van Elsas et al. 2008b). This then results in an
enrichment of target functions in the resulting metagenome.
As an example, such an experiment has been set up in order
to attempt to bias soil microbial communities towards
organisms that use chitin as a carbon source under condi-
tions of native versus high pH (Kielak et al., manuscript in
review). An advantage of this strategy is its low cost and
effort, together with the generally low-tech procedures.
However, a side effect of ecological enhancement is that
organisms that depend on the activities of the target
microbes can also proliferate, thus resulting in a potential
“false” enrichment and reduction of the (optimized) target
gene hit rate. However, by fine-tuning the selective criteria
applied, this problem can be minimized.

In another approach, specific functions/activities within a
microbial community can be targeted to increase their
activity/expression. Thus, stable isotope probing (SIP)
has been applied as a method to selectively target functions
involved in an ecological process, thereby making the
underlying genes accessible (Cebron et al. 2007, Dumont et
al. 2006). SIP allows one to distinguish the metabolically
active members of a microbial community from the inactive
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Fig. 1 Schematic overview of the major function-based metagenomic assessment strategies discussed in this article
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ones using the addition of a substrate labeled with a stable
isotope (13C or 15N) to the environmental sample. If sufficient
isotope has been incorporated into the DNA of the active
microorganisms, this labeled (“heavy”) DNA can be separated
from unlabeled (“light”) DNA by density gradient ultracen-
trifugation and further analyzed. The method thus enables the
establishment of a direct link between function and identity
(Chen and Murrell 2010; Cupples 2011; Dumont and Murrell
2005; Radajewski et al. 2003; Uhlik et al. 2009). Depending
on the type of labeled substrate used, one can additionally
bias the sample in much the same way as in ecological
enhancement, targeting specific active ecotypes within a
sample. However, a major drawback of SIP remains the
fact that unnaturally high concentrations of labeled substrate
may be required, next to too extended incubation times, in
order to attain sufficient yields of labeled DNA in the active
organisms. The former may result in growth inhibition,
whereas the latter might accrue an accumulation of the
label in the “wrong” trophic classes. An additional prac-
tical disadvantage is the prohibitively high cost of labeled
substrate. Another problem of SIP is technical as the
differentiation between labeled and unlabeled DNA may
be difficult: unlabeled high G–C% DNA may have a
density profile that approaches that of labeled low G–C%
DNA (Buckley et al. 2007).

Despite such limitations, SIP is a very valuable tool to
reduce sample complexity and increase the hit rates of
particular target genes (Chen and Murrell 2010). It is
especially practical in the search for target metabolic
genes for biotechnical applications.

DNA extraction and processing

Extraction of microbial community DNA for use in meta-
genomic library construction can be roughly divided into
two strategies: (1) “direct extraction”—the microbial commu-
nity DNA is directly isolated from the sample and (2) “indirect
extraction”—the microbial cells are first isolated from the
sample prior to cell lysis (Robe et al. 2003; Van Elsas et al.
2008a). Both methods have their own specific advantages and
biases. Four key parameters that define the suitability of the
DNA extracted by each method for subsequent metagenomics
analysis have been identified: yield, purity, fragment size, and
representativeness. Unfortunately, in practice, these factors
often stand in negative relation to one another. Enhancing
one will often have a negative effect on other factors. As a
matter of example, these extraction trade-offs may result in
either low-yield extracts containing large DNA fragment
sizes versus high-yield small-fragment DNA. A low average
fragment size obviously impedes the subsequent analysis of
larger operons, for which larger insert libraries are needed
(Williamson et al. 2011).

A recent study (Delmont et al. 2011) showed that the
apparent functional diversity present in an ecosystem is not
severely affected by the DNA extraction method, possibly
reflecting the high functional redundancy in most natural
microbial communities. However, the inevitable biases
inherent to any DNA extraction method can lead to
unrepresentative (biased) microbial community DNA. This
caveat also impacts our strategies to explore the rare
biosphere. An interesting new method for separating DNA
from highly contaminated samples, called synchronous
coefficient of drag alteration, applies a rotating dipole
and quadruple electric field in an aqueous gel by which
DNA is concentrated at a focal point while contaminants
are pushed outwards (Pel et al. 2009).

In particular cases (Neufeld et al. 2008), e.g., after
indirect extraction of DNA from a sample or in a SIP
experiment, DNA yields may be low, indicating the need for
pre-amplification to allow metagenomic library construction.
Regular PCR amplification is often not suitable due to the
requirement for specific annealing sites of the primers. A
suitable technique is offered by multiple displacement ampli-
fication (MDA). MDA is based on the use of phi29 DNA
polymerase and random hexamer primers and results in high-
fidelity replication, in a random fashion, of the different DNA
fragments present in the sample. Although under debate, the
method was shown to work without biases due to primer
specificity (Binga et al. 2008; Blanco and Salas 1985; Blanco
et al. 1989; Nelson et al. 2002). However, MDA can also yield
chimeric artifacts (Neufeld et al. 2008; Simon et al. 2009).
Neufeld et al. (2008) clearly showed the potential of SIP
combined with MDA. They incubated a marine microbial
community with in situ concentrations of labeled substrate
(methanol) and subsequently performed MDA on the labeled
DNA for construction of a fosmid library. They found that the
amplified DNAwas very representative of the sample.

Metagenomic library construction and gene expression

Construction of a metagenomic library should be accompa-
nied by the careful selection of the appropriate average DNA
fragment size. Moreover, suitable vectors and expression
hosts should be selected. It is vital to understand that, for most
natural ecosystems, complete coverage of the extant diversity
cannot be achieved, and so most libraries will consist of
fragmentary randomly sampled genes from an overall DNA
pool. Only the most abundant fraction of the gene pool will be
present in the library, and hence the extracted DNA pool is a
sub-selection of the complete metagenome. The extracted
DNA pool is further biased by factors such as the effect of
sampling, cell separation, lysis intensity, and DNA size
variation. Delmont et al. (2011) recently showed that up to
80% increase in genetic diversity is achievable by diversifying

1008 Appl Microbiol Biotechnol (2012) 93:1005–1020



the extraction factors (meaning, adding extra extraction
modules) in comparison to the most effective single extraction
strategy. Simple stochasticity thus dictates that the prevalence
of genes from the dominant biosphere will greatly exceed that
of genes from the rare biosphere. Therefore, the selection of
the vector/host system is ideally guided by prior knowledge
about the prevalence and distribution of different bacterial
types in the sampled habitat.

Once a metagenomic library has been constructed,
screens need to be performed in high throughput to uncover
the genes of interest. The two common strategies, i.e., (1)
functional and (2) sequence-based (genetic) screening, have
been widely applied. It is obvious that functional screening
provides a very straightforward way towards the objective.
Thus, the target genes in metagenomic libraries are expressed
in a relevant experimental setup in order to visualize
(detect) them and confirm their assignment to the func-
tion. In contrast, genetic screening is dependent on prior
knowledge of expected gene sequences or motifs. Direct
hybridization of PCR-based screenings has been the method
of choice; however, current high-throughput sequencing has
opened up the way to employ direct sequencing-based
analyses.

In most metagenomics studies performed thus far,
Escherichia coli has been used as the cloning host as an
extended genetic toolkit is available for this host. Depending
on the size of the DNA fragment that needs to be inserted,
different vectors have been employed. For small fragments,
plasmids <15 kb, for larger fragments cosmids (15–40 kb),
fosmids (25–45 kb), and/or bacterial artificial chromosomes
(BACs) (100–200 kb) have been successfully used (Angelov
et al. 2009; Kakirde et al. 2011; Uchiyama and Miyazaki
2009; Van Elsas et al. 2008a).

In order to eliminate the limitations generated by using E.
coli as a single host, shuttle vectors and non-E. coli host
systems have been developed. Bacterial strains from genera
like Burkholderia, Bacillus, Sphingomonas, Streptomyces,
and Pseudomonas have thus been reported as alternative
hosts (Courtois et al. 2003; Eyers et al. 2004; Martinez et
al. 2004; Van Elsas et al. 2008a).

When expressing the metagenomic library material in a
host organism, two strategies can be applied: (1) single-host
expression and (2) multi-host expression. Although most
functional expression screens have been conducted with
a single host, in recent years a shift to multi-host gene
expression has been taking place. This is due to the idea
that a substantial part of the transformed genes cannot be
successfully expressed in a single organism and that the
use of multiple hosts either sequentially or in parallel
offers great advantages.

Possible causes of lack of gene expression A central issue
concerning the detectable expression of genes of metagenomes

in suitable hosts is, thus, the inability to detectably express a
major fraction of the target genes. This might be due to a
plethora of factors, such as codon usage differences,
improper promoter recognition, lack of proper initiation
factors, ribosomal entry, improper protein folding, absence of
essential co-factors, accelerated enzymatic breakdown of the
gene product, inclusion body formation, toxicity of the
gene product, or the inability of the host to secrete the
gene expression product. To what degree these different
factors contribute to the inability to detect the expression
of genes in a metagenomic library will differ per host/gene
combination. This makes the question as to what percentage
of genes within a library can be expressed by an available host
very difficult to answer. What we do know is that codon usage
is a particularly important factor in the successful expression
of foreign genes (Kudla et al. 2009). Most organisms have a
preference for specific codons when generating proteins or
encoding signals for initiation or termination of translation.
The preferred codons are referred to as “optimal” codons.
However, the nature of such codons varies between species
(Goodarzi et al. 2008). The occurrence of the resulting “codon
dialects” between different species is termed codon usage bias
(CUB). This phenomenon is particularly important regarding
the expression of foreign genes in a metagenomics host, as is
done in functional metagenome screens. Kudla et al. (2009)
clearly showed the effect of codon bias by synthesizing and
expressing 154 genes encoding the green fluorescent
protein (GFP) with randomly introduced silent mutations
in the third base position. The resulting expression levels
varied 250-fold across all variants, clearly illustrating the
dramatic effect that CUB has on gene expression. Besides
overall codon usage, also the preference for start codons can
vary greatly across bacterial species (Villegas and Kropinski
2008). Furthermore, CUB has been shown to be important in
translation (Sørensen et al. 1989), protein folding (Zalucki et
al. 2009), and secretion (Power et al. 2004; Zalucki and
Jennings 2007).

Gabor et al. (2004) quantified the probability of detection
of particular genes by random expression cloning on a
theoretical basis using 32 prokaryotic genomes (belonging
toEuryarchaeota,Crenarchaeota, Firmicutes, Actinobacteria,
and Proteobacteria). Three theoretical modes of expression
were examined: i.e. (1) independent expression with the
ribosomal binding site (RBS) and promoter provided by
the insert, (2) expression by transcriptional fusion with
the RBS on the insert, and (3) expression by translational
fusion with both RBS and promoter on the vector. The
latter option was considered to be irrelevant due to its
low chance of expression in a real-life experiment. About
40% of the extant enzymatic activities may be accessible
by random cloning in E. coli, with a range of 7–73%
between the five taxa examined. However, this study was
based on purely theoretical bioinformatics considerations
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and did not take into account key factors that play
defined roles in successful gene expression, such as the
presence of co-factors, protein folding, and/or secretion.

One way to more successfully express genes in metage-
nomic library hosts may be to engineer the host expression
machinery on the basis of the expected prevalence of genes
from source hosts. Thus, it would be interesting to tinker
with the host’s transcription and translation systems, thereby
increasing the recognition of the foreign RBS predicted to
be prevalent in the metagenome (Bernstein et al. 2007).
Moreover, one could boost the co-expression of chaperone
proteins to promote proper protein folding, whereas enhance-
ment of secretion of the target gene product is another
possibility (Ferrer et al. 2004; Jhamb et al. 2008). Not
only the host but also the vector can be engineered to
maximize the rate or frequency of gene expression. An
example is the use of dual-orientation promoters on the
vector, which may effectively increase the rate of successful
gene expression (Lämmle et al. 2007). However, such
promoters are probably most useful in small-fragment
libraries where native promoters may not be present in
the insert.

Single-host systems Most single-host metagenomic expres-
sion systems rely on E. coli. This organism is readily used
regarding gene expression assays based on many different
vectors. Because of its status as the most well-known
model host, there is ample knowledge about different
useful gene expression strategies. In fact, a wide variety
of expression systems is available for use in E. coli and
many genetic constructs have been assayed this way.
There is also a broad range of strains capable of efficient
replication of such vectors, which are either single- or
multi-copy, and confer low-frequency recombination and
protection against lytic phages (Sørensen and Mortensen
2005).

Multiple-host systems An alternative to the single-host
strategy, which increases the rate of gene expression, is
the use of multiple hosts, either sequentially or in parallel.
The use of multiple hosts diversifies the available expression
machinery, thus increasing the chance of successful gene
expression. At the same time, the effect of gene product
toxicity and enzymatic breakdown can be overcome. To
express genes from metagenomes in multiple hosts, shuttle
vectors with broad host range are of use. An example of an
advanced vector design (combining key characteristics) for
broad-host-range screenings was recently presented by
Aakvik et al. (2009). Fosmid libraries constructed using
broad-host-range fosmid and BAC vector pRS44 were
successfully transferred into Pseudomonas fluorescens
and Xanthomonas campestris. The main features of this
vector are (1) inducible copy number for controlled gene

expression, which minimizes possible gene product toxicity
but allows high-level gene expression for effective detection
in screenings, (2) the ability to stably hold inserts of up
to 200 kb, and (3) a high capacity to be efficiently
transferred to a wide range of hosts (Aakvik et al.
2009). A nice example of a metagenomic study in which
broad-host-range vectors were used was provided by
Craig et al. (2010). Metagenomic libraries derived from
soil were constructed in an IncP1-α broad-host-range
cosmid vector using six selected proteobacterial host strains,
i.e., Agrobacterium tumefaciens, Burkholderia graminis,
Caulobacter vibrioides, E. coli, Pseudomonas putida, and
Ralstonia metallidurans. Library screenings were conducted
on the basis of three types of phenotypic traits: antibiosis,
pigmentation, and colony morphology. Remarkably, a
high diversity of expression profiles between the differ-
ent hosts was found, with little overlap (Craig et al.
2010). This illustrates the fact that the same metage-
nomic library can yield totally different expression data,
purely based on the expression host used. Furthermore,
the still rather low frequencies of clones with desired
genes indicated the need for more robust screening meth-
ods to lower detection thresholds. Another broad-host-
range study (Martinez et al. 2004), which targeted novel
drugs, had already underlined the need for multiple-host
gene expression. Parallel screenings of metagenomic librar-
ies in multiple hosts yielded diverse expression profiles of
antibiotic- producing genes between hosts (Martinez et al.
2004).

On the basis of the foregoing, we conclude that an invest-
ment in the development of more sophisticated host–vector
systems on the basis of a broad range of host organisms is
needed. In particular, the development of host–vector systems
with environmentally prevalent strains from phyla that are
relatively incompatible with the E. coli expression machinery
(like Acidobacteria and Verrucomicrobia) holds great poten-
tial to increase the rates of expression of genes from
metagenomes.

Future developments Metagenomic approaches are in-
creasingly being assisted by massive (directly obtained)
sequence information. To bypass the difficulties of gene
expression, it should be possible, on the basis of such
information, to “translate” a whole coding sequence to
the expression signal and optimal codon usage typical
for E. coli. As an example, Bayer et al. (2009) codon-
optimized 89 genes with possible relation to methyl
halide transferases for expression in E. coli and obtained
an impressive result. That is, 94% of the predicted genes
were expressed and showed methyl halide transferase
activity. This example clearly indicates the high potential
of codon optimization strategies, in this case, evidenced
in E. coli.
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Functional screening

It is the ability to detect, isolate, and characterize expressed
genes in a metagenomic library which determines the
success of any function-based metagenomic assessment. A
broad array of screening methods can be used (summarized in
Fig. 1). Among these, three general detection strategies are
distinguished (Simon and Daniel 2009):

(1) Phenotypic insert detection (PID), where the expres-
sion of a particular trait is used to identify positive
clones

(2) Modulated detection (MD), a strategy that relies on the
production of a gene product that is necessary for
growth under selective conditions

(3) Substrate induction, a strategy that is based on the
induced expression of cloned genes via a specific
substrate

Although a distinction is made between these three
detection strategies, categorizing them into separate
groups would be incorrect. Often, a combination of them
is used in order to perform and optimize the screening.
For instance, phenotypic detection through a GFP reporter
gene can be combined with substrate-induced expression of
the insert gene (Uchiyama et al. 2005).

PID

PID is the most commonly used approach for the functional
screening ofmetagenomic libraries. The screen is based on the
detection of specific phenotypic traits. The intensity (level)
of gene expression is an important issue here since faint
expression signals can be easily missed in high-throughput
screenings. A possible aid is offered bymicrofluidic approaches
using nanoliter volumes. These can offer increasing sensitivity
of the assay since less gene product is required to yield a
detectable phenotype (Taupp et al. 2011).

Specific phenotypic traits may be detected in multiple ways.
The first way is based on direct expression, for instance, by
detecting pigmentation or colony morphology (Brady 2007),
both of which may directly result from the expressed inserted
gene (Craig et al. 2010; LeCleir et al. 2007). Another way is the
(indirect) reaction or interaction of an added substance with
the expressed gene product or a product that is a consequence
of this expression. Lastly, detection can be based on co-
expression of a reporter gene which is linked to the target
gene in the library. A high diversity of methods has been
developed based on these three strategies, of which the most
prominent ones will be discussed below.

Direct detection Visual detection is a phenotypic screening
method that is relatively straightforward and “low-tech”.

However, it is also quite labor-intensive. This screening
method works by positive clones displaying a trait (as the
result of the expression of a library gene) which is directly
observable. Examples of such observable traits are colony
pigmentation, irregular colony morphology, or halo forma-
tion on plate overlays. Coupling this direct detection method
with high-throughput technologies, such as that offered by
384-well plates, colony picking robots and microplate
readers, not only shortens processing time but also
enhances the reliability and comparability of screenings
performed on different clones. A disadvantage of this
method is its rather low resolution or sensitivity. For
example, if expression is low in a certain positive clone, a
phenotypic trait might not be readily detectable, resulting in
an incorrect rejection of “sub-threshold” positive clones.
Furthermore, the method does not allow direction to be
given to the screen. In a recent study (Craig et al. 2010),
clones were screened in high-throughput in multiple
hosts based on the three phenotypic traits mentioned
above. These traits were chosen based on the fact that they
are commonly associated with small-molecule production
(Craig et al. 2010). This illustrates the fact that these
methods are more suited to a broad-range exploration of
the metagenome for pleiotrophic traits than to directed
searches for a specific pathway or metabolite.

Indicator medium The use of indicator medium constitutes
a direct way to detect particular small molecules, chemical
reactions, or metabolic, catabolic, or antibiotic capabilities
of a clone. It is a popular detection method given its
suitability for high-throughput application, as well as its
amenability to many experiments, from broad screenings
of diverse gene products to the isolation of very specific
metabolic capabilities (De Vasconcellos et al. 2010; Fan
et al. 2011; Morohoshi et al. 2011; Tirawongsaroj et al. 2008).
Furthermore, the relative sensitivity of this method allows it to
detect changes in, e.g., pH at moderate expression levels,
especially when combined with droplet-based microfluidics,
where detectable concentrations are easily reached due to the
small volume in use.

A nice example of the use of indicator medium in
screenings is the isolation of novel metallo-proteases
from metagenomic libraries using milk-infused plates.
The screen was based on detection of proteolytic activity
in the E. coli clones, which confer the ability to hydrolyze
milk proteins. The library clones were incubated on skimmed
milk-containing agar plates and proteolytic activity was
detected by the formation of clear haloes on the plates
(Waschkowitz et al. 2009).

The use of indicator media holds great promise as the
successful expression of foreign genes in the host can be
readily monitored in high throughput. Relying on the suc-
cessful expression of foreign genes for detection might yield
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low amounts of positive hits yet give the guarantee that the
gene is functional in the metagenome host. However, a prob-
lem is that the target enzymes are only expressed intracellu-
larly in the metagenome host and the cell membranemight not
necessarily be permeable to the indicator substances present in
the medium. Hence, secretion of the gene product is necessary
for detection. Moreover, other problems can arise, such as
enzymatic breakdown or intracellular product accumulation
(Sørensen and Mortensen 2005), which can result in toxicity.
Forced cell lysis may hold the solution, as it may bring the
indicator substance into contact with the intracellular target
proteins (Bao et al. 2011). However, care should be taken to
not denature the expressed proteins by the lysing agents since
otherwise protein activity as well as its interaction with the
indicator substrate might be lost. Furthermore, mechani-
cal cell disruption can be time-consuming and labor-
intensive. A possible way of avoiding this is to use an
autolytic vector. Li et al. (2007) developed a UV-
inducible autolytic vector for use in high-throughput
screenings. An SRRz lysis gene cassete was inserted
downstream of a UV-inducible promotor in E. coli. Cell
lysis efficiency was tested by expressing β-galactosidase
in E. coli prior to UV induction. After UV-induced lysis,
extracellular (supernatant) β-galactosidase activity was
compared to the total of intracellular (pellet) and extracellular
β-galactosidase activity to quantify lysis efficiency. A lysis
effiencency of 60% or more was observed at a temperature
of 30 °C. This is comparable to conventional lysozyme treat-
ment. However, at 37 °C, the lysis rate was less consistent.
Thus, use of such an autolytic vector might provide a simple
alternative to existing lysis techniques (Li et al. 2007).

In addition to the beta-galactosidase-based screen, several
other chromogenic and fluorogenic reporter techniques were
proven to be efficient in the identification of the activities of
enzymes encoded by the inserted gene(s). LeCleir et al. (2007)
thus showed the presence of chitinolytic enzymes in an
estuarine metagenomic library by cleavage of fluorogenic
analogs of chitin.

MD

MD does not rely on the direct detection of an expressed gene,
but it uses a predesigned expression route. By modulating the
expression host and/or vector systems, selection and detection
of inserted genes can be manipulated, for instance by the
coexpression of reporter genes or heterologous comple-
mentation. This results in more specific screenings and
standardized detectable signals.

Reporter genes The use of reporter genes is a suitable
method for high-throughput screenings. The lacZ gene
encoding beta-galactosidase (resulting in colony coloring
upon growth on X-Gal-containing medium) is frequently

used as a reporter gene. In an experiment to screen for
metagenomic clones containing genes that interfere with
quorum sensing (QS), this reporter gene was used. Screening
was achieved by measuring the potential degradation of the
QS signalingmolecules. An A. tumefaciens strain containing a
traI-lacZ gene fusion was used in the screening. By inducing
the traI gene with the QS signal molecule homoserine
lactone 3-oxo-C8-HSL, lacZ is activated. This results in
beta-galactosidase production, yielding blue colonies. If,
however, 3-oxo-C8-HSL is broken down by the host, lacZ
induction is inhibited and no blue color appears. This
would be an indication of a quorum sensing-inhibitory or
degradation activity of the clone. The experiment yielded 438
positive clones showing QS inhibition (Schipper et al. 2009).

A great advantage of this approach is that detection of
positive clones does not rely on successful expression of a
gene product downstream of transcription. Nor does a pos-
sibly faint expression of the inserted gene hamper detection,
as it might in other detection methods. This can be of great
benefit when searching for genes that might be hard to
express in the host.

Heterologous complementation (HC) Heterologous com-
plementation (HC) relies on exploring foreign genes to
achieve genetic complementation in the host, resulting in
the expression of a gene product that is vital for growth
under selective conditions. The technique allows for great
selectivity and, thereby, a screen can be precisely directed to
search for specific genes (Kellner et al. 2011; Simon et al.
2009). An example is presented by Simon et al. (2009) who
screened metagenomic plasmid and fosmid libraries derived
from glacial ice for DNA polymerase encoding genes.
This was achieved by using an E. coli strain that carries
a cold-sensitive mutation in the 5′–3′ exonuclease domain of
DNA polymerase I, which is lethal at temperatures below
20 °C. By growing the clones on antibiotic-containing
plates compatible with vector resistance, at a temperature of
18 °C, positive clones can be identified that complemented the
lethal mutation. Using this approach, 17 plasmids and 1
fosmid with the desired phenotype were retrieved from the
clone library. Sequence analysis of nine positive clones indi-
cated that indeed DNA polymerase genes had been isolated
from the library. Taking into account the conserved nature of
DNA polymerase genes and the degree of homology to known
DNA polymerase genes, this result led to the conclusion
that the genes had been recovered from as-yet-unexplored
microorganisms (Simon et al. 2009).

Another example of HC is provided by a study that
attempted to isolate novel lysine racemase genes from a
metagenome (Chen et al. 2009). An E. coli strain carrying
a lysine auxotrophy mutation was used to screen for the
aforementioned genes in a metagenomic library derived from
garden soil. Clones were grown on D-lysine-supplemented
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medium. Since only successful recombinant clones would be
able to catabolize D-lysine, unsuccessful clones would starve
on the medium. Using this method, a positive clone was
identified and sequenced. To confirm that the inserted gene
was derived from the metagenome and not from digested
DNA fragments during library construction, primers based
on the detected lyr (lysine racemase) gene were designed.
These primers then successfully amplified the lyr gene direct-
ly from the metagenomic DNA by PCR (Chen et al. 2009).

Induction by substrate

Induction of gene expression by substrate is particularly
practical for the detection of catabolic genes. Expression
of catabolic genes is often induced by substrates and/or
metabolites of catalytic enzymes. The regulatory elements
of these catabolic genes are generally situated close to the
genes themselves. These elements have been shown to work
in host organisms like E. coli.

Substrate-induced gene expression Uchiyama et al. (2005)
developed the so-called substrate-induced gene expression
(SIGEX) system for use as a screening method for particular
catabolic genes. To make this method high-throughput-
compatible, an operon-trap GFP expression vector was used,
resulting in co-expressed GFP upon substrate-induced expres-
sion of any responsive inserted gene. This GFP expression
subsequently enabled the separation of positive clones by
fluorescence-assisted cell sorting (FACS). In the study,
metagenomic genes from groundwater were found that
could be induced by benzoate and naphthalene. This
yielded 58 benzoate- and four naphthalene-positive clones
(Uchiyama et al. 2005). By changing the substrate, the scope
of the screen can be adjusted and different catabolic genes can
be targeted. Possibly unknown gene functions might even be
deduced from the inducing substrate that is used. However,
induction of expression by other effectors than the substrate
used can result in the detection of false positives.

Metabolite-regulated expression Metabolite-regulated ex-
pression constitutes a similar technique to the above one
(Williamson et al. 2005). It aims to detect biologically active
small molecules by an intracellular luxI–luxR biosensor
system. In this system, gene expression will be induced
or inhibited by quorum sensing. After a certain concen-
tration of gene product is met, induction of expression of
a transcriptional activator will take place by binding of
luxR, which activates luxI; subsequent expression of a
reporter gene will ensue. The successful expression of
the reporter gene allows high-throughput screening by
FACS. An advantage of this system is that it does not
rely on secretion of a gene product like screens with
indicator organisms do (a common technique to identify

antibiotics). Instead this technique screens intracellularly
for expressed small molecules (Williamson et al. 2005).

Major hurdles and future prospects in functional
metagenomics

Functional screening will remain an essential element to be
developed further in metagenomics aimed at mining natural
microbial communities for new products for biotechnology.
Two main hurdles can still be identified, i.e., the successful
expression of genes in metagenomic clone libraries and the
subsequent screening and selection of genes of interest from
expressed inserts.

The metagenomic expression paradigm

Two facets are important in the expression of foreign genes
in a metagenomics library host, i.e., the nature of the DNA
insert and that of the expression machinery (consisting of a
vector and host with tunable genetic circuitry). In “traditional”
foreign gene expression by genetic modification using known
source and host genetic backgrounds, the two facets have
become relatively well known. Thus, we have learned that
the host expression machinery needs to be chosen and tuned
to the requirements of the specific genetic insert. Often, the
insert was first codon-optimized for the expression host
to maximize the chance of successful gene expression. In
contrast, in functional metagenomics a new expression
paradigm is encountered, in which very little is known of
the genetic insert prior to gene expression. Hence, prior
knowledge on the estimated prevalence of source genes
in the metagenomic library can be extremely helpful and
may be required. On the basis of such knowledge, suitable
host/vector systems can be selected. And, in addition to that,
the host expressionmachinery might be tuned to a broad range
of inserts, with varying fragment types, origins and sizes.
It seems to be the relatively narrow-range expression
machinery present in E. coli which is preventing an
effective match on the individual insert level, leading to
the current expression bottlenecks that are often encountered
in functional metagenomic screenings. Broader expression
systems might overcome this bottleneck. There is still a need
for the development of additional expression hosts from less
studied phyla and of robust shuttle and induction systems for
these hosts. But even with a broadly applicable expression
system, trans-acting processes together with the shear ran-
domness of insertions into the vectors used will continue to
limit our ability to optimize the rate of expression of the
target genes present in the metagenome. In Fig. 2, an
overview of the different expression stages that are met
in functional metagenomic screens is provided.
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One obvious strategy would be to scale up functional
screenings by the use of multiple hosts and screening methods
in parallel (e.g. Craig et al. 2010). This enables one to increase
the chance to successfully express and detect inserted genes.
However, to prevent such an experiment to become costly and

time-consuming, high-throughput, potentially microfluidic,
technologies are required. This might be combined with
cell lysis procedures, either chemically or by the use of an
autolytic vector, to minimize biases by enzymatic breakdown
of the gene product, toxicity or secretion problems.

Fig. 2 Schematic overview of
the expression process from
induction all the way to
secretion of the light of
troubleshooting during a
metagenomic library screening
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The alternative to the upscaling of metagenomic screenings
is to restrict the scope of the study by narrowing down the
insert gene source diversity so that the expression machinery
can be more specifically engineered to suit the experimental
demands. To confine the scope of a metagenomics screen,
ecological enhancement can be very useful as it decreases
library complexity by an increase of the prevalence of genes
of preselected and dominating target microbes. One could
also think of preselecting genetic material on the basis of
G–C content by ultracentrifugation (Holben 2011), thereby
providing a better match between the sampled metagenome
and the expression host. Heterologous complementation is
also a very suitable detection method in such focused screens
because of its specificity and independence of successful
insert expression.

A more radical approach would be to tune the selected
target genes in the metagenome library to match the most
convenient expression machinery of the host. This would
require sequencing of a metagenomic library to identify
target genes and subsequent optimization of the codons
and signal sequences of these to suit the expression host.
Finally, optimized sequences would be synthesized, inserted,
and functionally screened in the relevant host.

Computational, sequence-based, and high-throughput
technologies may allow us to codon-optimize and synthesize
a complete metagenomic operon for functional screening. The
possibilities are enormous, like accessing ever rarer genes, as

well as increasing positive hit rates. However enticing this
idea may be, as well as its potential possibilities, currently
only selections of existing libraries are realistic candidates for
such experiments.

New technologies useful in functional screenings

The recent growth of the use of “library based” approaches
in metagenomics-based mining is directly related to the rapid
technological developments in molecular biotechnology.
Screening methodologies have evolved in the light of the
necessity to understand complex ecological and biochemical
interactions in different environments. The original screenings,
based on the isolation of mutant (transformed) cells of
host organisms on culture media, were considered to provide
insufficient power or throughput (Link et al. 2007; Shuman
2003). Thus, screening systems able to rapidly identify the
presence and activity of enzymes, effects of mutations, or
interaction and changes among microbial community
members were desired. Microarray (chip)-based technologies
coupled with microfluidic devices, cell compartmentalization,
flow cytometry, and cell sorting have been proposed as
promising new technologies (Link et al. 2007; Ottesen et
al. 2006; Tracy et al. 2010). It is important to pinpoint
the major roles fluorescence-based assays are playing in
single-cell analyses. Improved enzyme detection, resulting
from the discovery of new genes, isolation of proteins with

Table 1 Examples of enzymes and other molecules derived from (meta)genomics-related methodologies

Product Applicationa Manufacturerb Number
of patentsc

Cellulase Textile industry, plant biotechnology Syngenta Mogen B.V. 4,735d

Gist-Brocades N.V.

Roche Vitamins Inc

Lipase Cleaning industry, academic Genecor 6,649e

Protease Alkaline tolerant Sinobis 10,000f

Amylase Food industry BASF 5,208e

Chitinase Pharmaceuticals, food industry, bioremediation, biomedicine Sukahan Biotechnology 876d

Fluorescent protein Biometabolites, pharmaceutical industry for drug discovery Diversa 10,000g

Antibiotics Medicine Libragen, Kosan Technologies 10,000h

Xylanase Paper and textile industry Huzhou Llilly biology Technology Co. Ltd 1,321d

a The most important applications are listed here. For all products, the academic research is included as an application
b Other manufacturers may be involved in the production of similar biomolecules
c According to the FreePatentsOnline web engine (http://www.freepatentsonline.com/), the number of available patents related to query advance
search (including US Patents, US Patent Applications, EP Documents, Abstract of Japan, and WIPO from all years) scores from 1,000 to 10
d Scores of matches from 1,000 to 10
e Scores of matches from 999 to 10
f Scores of matches from 1,000 to 74
g Scores of matches from 1,000 to 213
h Scores of matches from 1,000 to 60
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high affinity, as well as phylogenetic analyses were reported
(Aharoni et al. 2006; Feng et al. 2007; Melkko et al. 2007).
Large metagenome libraries have been screened via single-
cell fluorescent assays and high-throughput flow cytometry in
the quest for novel catalytic activities (Link et al. 2006;
Santoro et al. 2002; Varadarajan et al. 2005). These screening
methods offer higher levels of quantification and the
possibility to detect multiple traits in one assay. Considering
the evolution of screening approaches, from Sydney
Brenner’s affirmation “just toothpicks and logic” to higher-
level technologies (which have become available at low cost),
increases in the rates of discovery of new bio-engineered
molecules can be predicted.

The hunt for novelty

The increasing human impact on the environment in the last
century has urged developments in our food, waste treatment,
agriculture, and biomedical industries. In this respect, explora-
tions of diverse habitats have increased with the increasing
demand for new enzymes, antibiotics, and other active biomo-
lecules as well as biofuels (Ferrer et al. 2009; Lorenz and Eck
2005; Schloss and Handelsman 2003). A recently developed
database—denominated MetaBioMe (Sharma et al. 2010)—
offers access to 510 “commercially useful” enzymes (CUEs)
by linking protein databases with data from metagenomic and
bacterial genomic datasets. These CUEs have been classified
into nine broad application categories, namely: agriculture,
biosensor, biotechnology, energy, environment, food and nu-
trition, medical, other industries, and miscellaneous. Among
these, biotechnology, food and nutrition, medicine, and bio-
degradation of toxic compounds are considered to be of
utmost importance. So far, one of the most frequently targeted
habitats for finding genetic “novelty” was soil. The cryptic
microbial treasures of different types of soil and sediments,
including those in extreme conditions (e.g., low pH, high
temperature, high salt concentration), have promised the pres-
ence of an enormous reservoir of different enzymes. Of late,
such environments are certainly underexplored. However,
metagenomics-derived products have already found their
way to the biotechnology market (Table 1), although their
metagenomic origin is not always revealed by the manufac-
turer. Moreover, it is often protected by patents.

Conclusion

High-throughput technology has been often associated with
increasing the success of function-basedmetagenomic screens.
However, high-throughput is more of a way of compensating
for the often low hit rates in metagenomics screens than a true
improvement of methods. The upscaling of a functional meta-
genomics screen by adopting a high-throughput strategy using

existing screening techniques may indeed increase the chance
of identifying target genes in a metagenome, and indeed there
is the rightful expectation that these high-throughput
screens will become more effective by the use of micro-
fluidic strategies, substrates with higher sensitivity, smartly
designed induction systems, and easily detectable reporter
genes. Collectively, such improvements may result in the low-
ering of detection thresholds and saving of costs.

Depending on the purpose of the application, there is still
ample room for improvement of expression strategies, such
as careful host (range) selection, co-expression of chaperones,
or codon optimization. It is the latter strategy that holds great
potential for the future by screening of sequence databases to
identify genes of interest, after which the targeted genes are

Fig. 3 The metagenomic expression bottleneck
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codon-optimized and synthesized before being expressed in
the target host. Key in overcoming expression bottlenecks is
certainly a more intricate understanding of the complex
aspects involved in expression of foreign genes (Fig. 3). Thus,
identification of crucial hurdles involved in the inability to
express genes of any metagenome should be considered as the
spearhead that allows us to move forward. Ultimately, a more
directed approach in improving existing gene expression
systems should be envisaged.

However, when metagenomic strategies are designed to
yield more optimal functional screenings, there might be a risk
of being trapped in an overdesigned experimental setup, which
leaves insufficient room for the discovery of the “real” instead
of the “similar” unknown biosphere. This holds especially true
when selecting target genes from sequenced metagenomic
libraries. Following this, caution should be taken when
weighing the advantages and disadvantages of different
DNA processing strategies for library construction.

To conclude, we posit that “the great screen anomaly” is a
current reality; however, the term “great expression inability”
might more appropriately describe current obstacles that ham-
per greater screening efficiencies. To what extent this anomaly
will persist (as its predecessor “the great plate count anomaly”
has) remains uncertain. Considerable fine-tuning of methods is
clearly still needed to make functional screening representative
of the environmental diversity and to boost its efficiency in
assigning genes to function. Nevertheless, considering the
pace at which innovative technologies evolve in this area, “the
great screen anomaly” probably awaits a very unsure future
with respect to its existence in the next decennium.
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