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Deep-sea endemic fungi are one component of an under-sampled invisible biosphere

whose contribution to benthic ecosystems is not yet understood. In the last decade,

molecular techniques have facilitated the discovery of several new deep-sea fungal groups,

especially in habitats such as hydrothermal vents and methane seeps. We assessed fungal

diversity at a methane seep in the Gulf of Mexico by sequencing partial ITS and LSU gene

regions from environmental DNA recovered from microoxic and anoxic sediment. While

most phylotypes were closely allied with common fungal species, the dominant phylotype

did not match any known terrestrial species and aligned with an uncultured deep-sea

fungus found in oxygen-depleted sediment at multiple sites in the Pacific Ocean. Despite

its apparently broad distribution and frequent occurrence in oxygen-depleted sediment,

the ecological role of this phylotype is not yet known.

ª 2011 Elsevier Ltd and The British Mycological Society. All rights reserved.
The deep sea is home to a rich and largely unexplored micro-

bial biosphere. Culture-independent studies have produced an

ever-growing body of knowledge regarding the diversity,

distribution and ecology of deep-sea microbes. Despite many

large scale investigations into microbial diversity (i.e. Sogin

et al. 2006), there have been relatively few studies of deep-sea

fungi. Marine Mycology, the first exhaustive review of marine-

occurring fungi, listed only five species endemic to the deep

sea (Kohlmeyer & Kohlmeyer 1979) and that number did not

increase until the 21st century (Hawksworth 2001). Fungal

species isolated from the deep sea presently number in the low

hundreds (Raghukumar et al. 2010).
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Using culture-based methods, fungi were first identified

from the Atlantic abyssal plane (4 450 m) in 1964 (Roth et al.

1964). Since then, fungi have been reported from many deep

ocean habitats including deep-sea sediment (Damare et al.

2006), hydrothermal vents (Gadanho & Sampaio 2005), and

methane seeps (Takishita et al. 2006). Culture-independent

molecular techniques have greatly increased the rate of

discovery of new fungal taxa from the oceans. While most

fungi recovered from the deep sea are closely related to known

terrestrial groups, several novel clades, known only from the

deep sea, have recently been discovered (e.g., DSF-group1 e

Nagano et al. 2010; Candida oceani e Burgaud et al. 2011;
ycological Society. All rights reserved.
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DSGM-64 and TAGIRI-23 e Jones et al. 2011). The ecology of

these deep-sea fungal taxa remains largely unexplored.

The goal of this study was to establish a baseline assess-

ment of fungal diversity at deep-seamethane seeps in the Gulf

of Mexico. Methane seeps formwhen steep pressure gradients

force hydrocarbon-enriched water upwards through the

sediment (Levin 2005). Seep sediments are characterized by

steep chemical gradients and shallow (<10 cm) anoxic layers

and support microbial and animal communities that are

dependent on chemosynthetic primary production (Levin

2005). Many fungi can thrive under conditions similar to

those observed in deep sea (Lorenz & Molitoris 1997;

Raghukumar et al. 2004) and a variety of fungi are able to

grow under anaerobic conditions, including fermentative

yeasts such as Saccharomyces cerevisiae and other members of

Saccharomycotina (Ascomycota), members of Neo-

callimastigomycotina (Chytridiomycota) growing in cattle

rumen, and litter decomposers in the early diverging lineage

Blastocladiomycota (Held et al. 1969; Liggenstoffer et al. 2010).

Evidence for any ecological roles played by potentially

anaerobic fungi from deep-sea environments is not clear.

To investigate the distribution of fungi associated with

deep-sea methane seeps, we collected sediment cores from

the Alaminos Canyon 601 methane seep in the Gulf of Mexico

(26 23.938N, 94 30.589W; 2 400 m) using anOcean Instruments

Mark III box corer outfitted with a transponder to monitor its

location. Only one sediment core was successfully recovered

from this location. Reduction/oxidation potential (redox) was

recorded at 1 cm intervals for the first 15 cm of the core.

Twenty-two sub-cores, ranging from 10 to 30 cm sediment

depth, were taken from the core using serological pipettes (tip

removed; 1 cm diameter, 33 cm length). Two sub-cores were

preserved in 10 % formalin for microscopy and twenty sub-

cores were preserved in 95 % ethanol for molecular analysis.

All sub-cores were frozen at �20 �C and remained frozen until

processed.
Fig 1 e Neighbour-joining tree of representative sequences from

(accession # JF821209), Alaminos Canyon A3c (accession # JF82

DSF-group1 (accession # AB507846), closest NCBI GenBank mat

representatives of major fungal groups (Ascomycota: Candida to

pityophila e accession # DQ384102 and Pseudoeurotium zonatum e

dendrobatidis e accession # NG027619). Bootstrap values (1 000 re

nucleotide substitutions per base.
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Sub-cores were sectioned at 1 cm intervals for microscopy

and molecular analyses. Formalin preserved sub-cores were

stained with BactiDrop Calcofluor (Remel: Lenexa, KS) and

examined under a fluorescent microscope. No hyphal

elements were observed. Environmental DNA from ethanol

preserved sub-cores was extracted using a PowerSoil DNA

extraction kit (MO BIO Laboratories: Carlsbad, CA) following

manufacturer’s protocols. An approximately 900-bp region

containing portions of the internal transcribed spacer (ITS )

and large subunit rDNA (LSU ) gene was amplified using the

primers ITS1 (50eTCC GTA GGT GAA CCT GCG G), ITS4 (50eTCC
TCC GCT TAT TGA TAT GC), LROR (50eACC CGC TGA ACT TAA

GC), and LR5 (50eTCC TGA GGG AAA CTT CG). Environmental

DNA was amplified according to the methods outlined in

O’Brien et al. (2005), ligated into plasmids, transformed into

Escherichia coli cells, and cloned, using a Topo-TA 5-min DNA

cloning kit (Invitrogen: Carlsbad, CA) following manufac-

turer’s protocols. Manufacturer’s maximum recommended

incubation times were used for each step. Colonies were

screened, amplified, and sequenced on an ABI 3730xl DNA

Analyzer following methods reported in O’Brien et al. (2005).

Alaminos Canyon sequences were compared against the NCBI

GenBank database. Neighbour-joining trees were constructed

in Mega (version 4.0, 1 000 replications, Tamura et al. 2007)

using highly similar matches and a representative subset of

major fungal taxa (Fig 1). Sequences were deposited on Gen-

Bank (accession # JF821197eJF821214).

A total of 39 fungal sequences were recovered from Ala-

minos Canyon sediment. Ascomycota accounted for the

majority of recovered sequences (27), followed by Basidio-

mycota (6), and Chytridiomycota (6). Number of recovered

sequences was highest at the redox boundary in the sediment

core (23 of 39 sequences). Transition from oxidized to reduced

sediment occurred at approximately 4 cmbelow the surface. A

phylotype within Ascomycota was found to occur almost

exclusively within 1 cm of the redox boundary (18 out of 23
Alaminos Canyon phylotype: Alaminos Canyon B3c

1201), Alaminos Canyon B4e (accession # JF821213),

ch (Metschnikowia sp. e accession # FJ794943), and

rresii e accession # U45731; Basidiomycota: Curreya

accession # DQ470988; Chytridiomycota: Batrachochytrium

plicates) are reported on or adjacent to each branch. Scale is
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sequences). This phylotype also comprised the majority of all

sequences recovered from Alaminos Canyon sediment (25 out

of 39 sequences).

Phylogenetic analysis revealed that the dominant phylo-

type recovered from Alaminos Canyon had no known

cognates in terrestrial systems. This phylotype did align with

other uncultured fungi from deep-sea sediments and clus-

tered within clade DSF-group1 (Nagano et al. 2010; Fig 1).

Nagano et al. (2010) reported the occurrence of this group in

deep-sea sediments in the western Pacific (1 200e9 800 m). It

has also been isolated from methane seeps near Japan

(640 m; Takishita et al. 2007) and the Gulf of California in the

eastern Pacific (1 600 m; Bass et al. 2007). DSF-group1 has

been detected in several microoxic deep-sea environments,

including bacterial mats and methane seep sediment

(Takishita et al. 2007). This group’s closest known relative is

Metschnikowia bicuspidata, a parasitic fungus that occurs on

freshwater Daphnia species (Nagano et al. 2010). Other fungal

parasites are known from the deep sea. For instance, black

yeasts were reported parasitizing Bathymodiolus brevior

mussels from hydrothermal vents in North Fiji Basin (Van

Dover et al. 2007).

Without morphological or ecological data, it is difficult to

determine if uncultured fungi identified through molecular

methods are members of the deep-sea community or

contaminants with no significant ecologic contribution.

Recent phylogenetic studies all reject a marine origin for

Kingdom Fungi, and instead support the view that fungi from

marine systems are derived from terrestrial cognates (James

et al. 2006; Zuluaga-Montero et al. 2010). Even the most noto-

rious marine fungus, Aspergillus sydowii, which caused

massive coral die-offs in the Caribbean, is descended from

a widespread lineage of terrestrial fungi (Weir-Brush et al.

2004). Several lines of evidence suggest that DSF-group1,

thus far only identified through molecular methods, is

endemic to the deep sea and not a contaminant. It is broadly

distributed throughout the Pacific Ocean and found in the Gulf

of Mexico, but it is not found in any terrestrial system; it

diverges from its closest genetic match, with well supported

phylogenetic trees (bootstrap¼ 100; Fig 1); and it has been

consistently associated with oxygen-depleted environments,

suggesting that it may take advantage of these environments

either as a facultative anaerobe or by consuming other

organisms that thrive there. This strongly supports the

conclusion of Nagano et al. (2010) that there is a globally

distributed, deep-sea endemic, fungal group within

Ascomycota.

The discovery of a novel fungal group that is broadly

distributed in deep-sea ecosystems suggests that further

molecular studies could reveal a reservoir of previously

unknown fungal biodiversity. Deep-sea communities, espe-

cially those restricted to chemoautotrophic ecosystems, tend

to segregate by well-defined biogeographic provinces (Sibuet

& Olu 1998; Van Dover et al. 2002). Fungal biogeography in

the deep sea is poorly understood, but DSF-group1 appears to

contradict this general trend. The larger question may be

whether fungi endemic to the deep sea are rare colonists with

a few well-distributed exceptions, such as DSF-group1, or

cosmopolitan in low abundance throughout deep-sea

ecosystems.
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