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Abstract Lipases, triacylglycerol hydrolases, are an
important group of biotechnologically relevant enzymes
and they find immense applications in food, dairy,
detergent and pharmaceutical industries. Lipases are by
and large produced from microbes and specifically
bacterial lipases play a vital role in commercial ventures.
Some important lipase-producing bacterial genera include
Bacillus, Pseudomonas and Burkholderia. Lipases are
generally produced on lipidic carbon, such as oils, fatty
acids, glycerol or tweens in the presence of an organic
nitrogen source. Bacterial lipases are mostly extracellular
and are produced by submerged fermentation. The enzyme
is most commonly purified by hydrophobic interaction
chromatography, in addition to some modern approaches
such as reverse micellar and aqueous two-phase systems.
Most lipases can act in a wide range of pH and
temperature, though alkaline bacterial lipases are more
common. Lipases are serine hydrolases and have high
stability in organic solvents. Besides these, some lipases
exhibit chemo-, regio- and enantioselectivity. The latest
trend in lipase research is the development of novel and
improved lipases through molecular approaches such as
directed evolution and exploring natural communities by
the metagenomic approach.

Introduction

The advent of enzymology represents an important
breakthrough in the biotechnology industry, with the
worldwide usage of enzymes being nearly U.S. $ 1.5
billion in 2000 (Kirk et al. 2002). The major share of the
industrial enzyme market is occupied by hydrolytic

enzymes, such as proteases, amylases, amidases, esterases
and lipases. In recent times, lipases (triacylglycerol
acylhydrolase, E.C. 3.1.1.3) have emerged as key enzymes
in swiftly growing biotechnology, owing to their multi-
faceted properties, which find usage in a wide array of
industrial applications, such as food technology, detergent,
chemical industry and biomedical sciences (Jaeger et al.
1994, 1999; Pandey et al. 1999). Lipases are hydrolases,
which act under aqueous conditions on the carboxyl ester
bonds present in triacylglycerols to liberate fatty acids and
glycerol. The natural substrates of lipases are long-chain
triacylglycerols, which have very low solubility in water;
and the reaction is catalyzed at the lipid–water interface.
Under micro-aqueous conditions, lipases possess the
unique ability to carry out the reverse reaction, leading
to esterification, alcoholysis and acidolysis. Besides being
lipolytic, lipases also possess esterolytic activity and thus
have a very diverse substrate range, although they are
highly specific as chemo-, regio- and enantioselective
catalysts (Jaeger et al. 1994, 1999; Jaeger and Reetz 1998;
Kazlauskas and Bornscheur 1998; Pandey et al. 1999;
Beisson et al. 2000; Gupta and Soni 2000; Jaeger and
Eggert 2002). The catalytic potential of lipases can be
further enhanced and made selective by the novel
phenomena of molecular imprinting and solvent engineer-
ing and by molecular approaches like protein engineering
and directed evolution (Reetz and Jaeger 1999; Jaeger et
al. 2001). The properties of lipases that need to be
improved are stability and turnover under application
conditions. They need to be robust and versatile with
respect to the range of substrates they can act on, but at the
same time they should have a high specificity for the
reactions they catalyze.

Lipases are serine hydrolases which act at the lipid–
water interface. The catalytic triad is composed of Ser-
Asp/Glu-His and usually also a consensus sequence (Gly-
x-Ser-x-Gly) is found around the active site serine. The
three-dimensional (3-D) structures of lipases reveal the
characteristic α/β-hydrolase fold (Nardini and Dijkstra
1999).
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The growing importance of lipases within biotechnolo-
gical perspectives can be easily envisaged by the number
of recent review articles covering various aspects of this
extremely versatile biocatalyst, such as biochemistry,
assay protocols, molecular biology, purification ap-
proaches and biotechnological applications (Jaeger and
Reetz 1998; Beisson et al. 2000; Gupta et al. 2003; Saxena
et al. 2003). In this review, we present an overview on the
fermentation, downstream processes and properties of
bacterial lipases.

Sources of lipases

Lipases are ubiquitous in nature and are produced by
various plants, animals and microorganisms. Lipases of
microbial origin, mainly bacterial and fungal, represent the
most widely used class of enzymes in biotechnological
applications and organic chemistry. A list of the common
bacterial lipase producers is presented in Table 1. The
extracellular bacterial lipases are of considerable commer-
cial importance, as their bulk production is much easier.
Although a number of lipase-producing bacterial sources
are available, only a few are commercially exploited as
wild or recombinant strains (Jaeger et al. 1994; Palekar et
al. 2000). Of these, the important ones are: Achromobac-
ter, Alcaligenes, Arthrobacter, Bacillus, Burkholderia,
Chromobacterium and Pseudomonas. Of these, the lipases
from Pseudomonas bacteria are widely used for a variety
of biotechnological applications (Jaeger et al. 1994;
Pandey et al. 1999; Beisson et al. 2000).

Several products based on bacterial lipases have been
launched successfully in the market in the past few years
(Table 2). A number of such products are from Pseudo-
monas spp, such as Lumafast and Lipomax with their
major application as detergent enzymes, while Chiro
CLEC-PC, Chirazyme L-1 and Amano P, P-30 and PS
have tremendous potential in organic synthesis.

Fermentation conditions

Bacterial lipases are mostly extracellular and are greatly
influenced by nutritional and physico-chemical factors,
such as temperature, pH, nitrogen and carbon sources,
presence of lipids, inorganic salts, agitation and dissolved
oxygen concentration (Brune and Gotz 1992; Aires-Barros
et al. 1994; Jaeger et al. 1994; Kim et al. 1996). A list of
various fermentation conditions used with different bac-
teria is presented in Table 3.

The major factor for the expression of lipase activity has
always been carbon, since lipases are by and large
inducible enzymes (Lotti et al. 1998) and are thus
generally produced in the presence of a lipid source such
as an oil or any other inducer, such as triacylglycerols,
fatty acids, hydrolyzable esters, tweens, bile salts and
glycerol (Ghosh et al. 1996; Dharmsthiti et al. 1998;
Shirazi et al. 1998; Bradoo et al. 1999; Rathi et al. 2001).
However, their production is significantly influenced by

Table 1 Sources of bacterial lipases

Bacterium References

Achromobacter sp. Mitsuda et al. 1988
A. lipolyticum Brune and Gotz 1992;

Davranov 1994
Acinetobacter sp. Wakelin and Forster 1997;

Barbaro et al. 2001
A. calcoaceticus Dharmsthiti et al. 1998;

Jaeger et al. 1999;
Pandey et al. 1999;
Pratuangdejkul and Dharmsthiti 2000

A. radioresistens Liu and Tsai 2003
Alcaligenes sp. Mitsuda et al. 1988
A.denitrificans Odera et al. 1986
Arthrobacter sp. Pandey et al. 1999
Archaeglobus
fulgidus

Jaeger et al. 1999

Bacillussp. Sidhu et al. 1998a, 1998b;
Pandey et al. 1999;
Sharma et al. 2002a;
Nawani and Kaur 2000

B. alcalophilus Ghanem et al. 2000
B. atrophaeus Bradoo et al. 1999
B.megaterium Hirohara et al. 1985
B.laterosporus Toyo-Jozo 1988
B. pumilus Jaeger et al. 1999
B.sphaericus Toyo-Jozo 1988
B. stearothermophilus Bradoo et al. 1999; Jaeger et al. 1999
B. subtilis Jaeger et al. 1999
B. thaiminolyticus Toyo-Jozo 1988
B. thermocatenulatus Jaeger et al. 1999; Pandey et al. 1999
Brochothrix
thermosphacta

Brune and Gotz 1992

Burkholderia glumae Jaeger and Reetz 1998;
Reetz and Jaeger 1998

Chromobacterium
violaceum

Koritala et al. 1987

C. viscosum Jaeger and Reetz 1998; Jaeger et al. 1999
Corynebacterium
acnes

Brune and Gotz 1992

Cryptocoocus laurentii Toyo-Jozo 1988
Enterococcus faecalis Kar et al. 1996
Lactobacillus curvatus Brune and Gotz 1992
L. plantarum Lopes Mde et al. 2002
Microthrix parvicella Wakelin and Forster 1997
Moraxella sp. Jaeger et al. 1999
Mycobacterium
chelonae

Pandey et al. 1999

Pasteurella multocida Pratt et al. 2000
Propionibacterium
acnes

Jaeger et al. 1999

P. avidium Brune and Gotz 1992
P. granulosum Brune and Gotz 1992
Proteus vulgaris Jaeger et al. 1999
Pseudomonas
aureofaciens

Koritala et al. 1987
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other carbon sources, such as sugars, sugar alcohol,
polysaccharides, whey, casamino acids and other complex
sources (Gilbert et al. 1991a; Lotrakul and Dharmsthiti
1997; Dharmsthiti and Kuhasuntisuk 1998; Ghanem et al.
2000; Rashid et al. 2001). Certain long-chain fatty acids,
such as oleic, linoleic and linolenic acids, are known to
support lipase production from various bacteria, such as P.
mephitica (Ghosh et al. 1996). However, lipases from P.
aeruginosa EF2 (Gilbert et al. 1991a) and Acinetobacter
calcoaceticus (Mahler et al. 2000) are reported to be
repressed in the presence of long-chain fatty acids, such as
oleic acid. Yeo et al. (1998) used the fatty acid ester t-butyl
octanoate (TBO) for the screening of lipase-producing
bacteria from different soil samples. Of 279 strains
isolated, Burkholderia YY62 was selected for its strong
TBO-hydrolyzing activity. Kanwar et al. (2002) reported
the production of a Pseudomonas sp. G6 lipase in the
presence of n-alkane substrates, with a maximum produc-
tion of about 25 units/ml when n-hexadecane was the sole
carbon source. Production was enhanced to nearly 2.4-fold
using tributyrin at a concentration of 0.05% in the
production medium.n-Hexadecane and olive oil were
employed as the carbon source for producing an alkaline
lipase from A. radioresistens (Liu and Tsai 2003).

Besides carbon source, the type of nitrogen source in
the medium also influences the lipase titers in production
broth (Ghosh et al. 1996). Generally, organic nitrogen is

preferred, such as peptone and yeast extract, which have
been used as nitrogen source for lipase production by
various Bacillus spp (viz. Bacillus strain A30-1, B.
alcalophilus, B. licheniformis strain H1) and various
pseudomonads (viz. Pseudomonas sp., P. fragi, P.
fluorescens BW 96CC), Staphylococcus haemolyticus;
(Wang et al. 1995; Khyami-Horani 1996; Pabai et al.
1996; Oh et al. 1999; Ghanem et al. 2000; Lanser et al.
2002; Sharma et al. 2002b), while tryptone and yeast
extract have been used in the case of S. haemolyticus L62
(Oh et al. 1999). Inorganic nitrogen sources such as
ammonium chloride and diammonium hydrogen phos-
phate have also been reported to be effective in some
microbes (Gilbert et al. 1991a, 1991b; Bradoo et al. 1999;
Dong et al. 1999; Rathi et al. 2001).

Divalent cations stimulate or inhibit enzyme production
in microorganisms. Rathi et al. (2001) observed stimula-
tion in lipase production from Burkholderia sp. in the
presence of Ca2+ and Mg2+. Sharma et al. (2002b) also
reported stimulation in lipase production from Bacillus sp.
RSJ1 in the presence of calcium chloride. However, most
other metal ion salts were inhibitory to lipase production.
Iron was found to play a critical role in the production of
lipase by Pseudomonas sp. G6 (Kanwar et al. 2002).

In addition to the various chemical constituents of a
production medium, physiological parameters such as pH,
temperature, agitation, aeration and incubation period also
play an important role in influencing production by
different microorganisms. The initial pH of the growth
medium is important for lipase production. Largely,
bacteria prefer pH around 7.0 for best growth and lipase
production, such as in the case of Bacillus sp. (Sugihara et
al. 1991), Acinetobacter sp. (Barbaro et al. 2001) and
Burkholderia sp. (Rathi et al. 2001). However, maximum
activity at higher pH (>7.0) has been observed in many
cases (Nashif and Nelson 1953; Gilbert et al. 1991a; Wang
et al. 1995; Khyami-Horani 1996; Dong et al. 1999;
Sharma et al. 2002b). The optimum temperature for lipase
production corresponds with the growth temperature of the
respective microorganism. For example, the best temper-
ature for growth and lipase production in the case of
Bacillus sp. RSJ1 was 50°C (Sharma et al. 2002b). It has
been observed that, in general, lipases are produced in the
temperature range 20–45°C. Incubation periods ranging
from few hours to several days have been found to be best
suited for maximum lipase production by bacteria. An
incubation period of 12 h was optimum for lipase
production by A. calcoaceticus and Bacillus sp. RSJ1
(Mahler et al. 2000; Sharma et al. 2002b) and 16 h for B.
thermocatenulatus (Schmidt-Dannert et al. 1997). While
maximum lipase was produced after 72 h and 96 h of
incubation, respectively, in the case of the Pseudomonas
sppP. fragi and P. fluorescens BW 96CC (Pabai et al.
1996; Dong et al. 1999).

Thus, bacterial lipases are generally produced in the
presence of oil or any other lipidic substrate (viz. fatty acid
esters, fatty acids, glycerol) as carbon in the presence of
any complex nitrogen source. The requirement for metal
ions varies with the organism. However, physical para-

Bacterium References

P. fluorescens Arpigny and Jaeger 1999;
Pandey et al. 1999

P. fragi Jaeger et al. 1994; Schuepp et al. 1997;
Ghanem et al. 2000

P. luteola Arpigny and Jaeger 1999;
Litthauer et al. 2002

P. mendocina Jaeger et al. 1999; Surinenaite et al. 2002
P. nitroreducens var.
thermotolerans

Ghanem et al. 2000

P. pseudomallei Kanwar and Goswami 2002
P. wisconsinensis Arpigny and Jaeger 1999
Psychrobacter
immobilis

Jaeger et al. 1999

Staphylococcus
aureus

Simons et al. 1996; Jaeger et al. 1999

S. epidermidis Simons et al. 1996; Jaeger et al. 1999
S. haemolyticus Oh et al. 1999
S. hyicus Jaeger et al.1999; Van Kampen et al.2001
S. warneri Pandey et al.1999; Van Kampen et al.2001
S. xylosus Pandey et al.1999; Van Kampen et al.2001
Serratia marcescens Matsumae et al. 1993,1994;

Pandey et al. 1999; Abdou 2003
Streptomyces
exfoliatus

Arpigny and Jaeger 1999

Sulfolobus
acidocaldarius

Jaeger et al. 1999

Vibrio chloreae Jaeger et al. 1999

Table 1 (continued)
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meters such as pH, temperature, agitation and aeration
influence lipase production via modulating the growth of
the bacterium. Lipases are produced throughout bacterial
growth, with peak production being obtained by the late
log phase. The production period for lipases varies from a
few hours to a few days.

Strategies for improving fermentation conditions:
statistical design approach

When developing an industrial fermentation, designing a
fermentation medium is of critical importance, because
medium composition significantly affects product concen-
tration, yield and productivity. For commodity products,
medium cost can substantially affect the overall process
economics. Designing the medium is a laborious,
expensive and often time-consuming process involving
many experiments (Kennedy and Krouse 1999). There is a
general practice of determining optimal concentration of
media components by varying one factor at a time.
However, this method does not depict the net effect of
total interactions among the various media components
(Rathi et al. 2001). Thus, the emphasis has shifted towards
medium optimization using response surface methodology
(RSM). The factorial design of a limited set of variables is
advantageous in relation to the conventional method of
manipulation of a single parameter per trial, as the latter
approach frequently fails to locate the optimal conditions
for the process, due to its failure to consider the effect of
possible interactions between factors. Moreover, the
factorial design makes it possible to take advantage of
practical knowledge about the process during the final
RSM analysis (Kalil et al. 2000).

Optimization through factorial design and RSM analy-
sis is a common practice in biotechnology. Various
research workers have applied this approach, especially
for the optimization of process parameters such as pH,
temperature, aeration and others. Using the RSM ap-
proach, Mahler et al. (2000) reported that lactic acid used
as carbon source does not have any significant effect on
lipase production, while gum arabic increases the yield of
extracellular lipase by 2- to 5-fold and oleic acid has a
negative effect on lipase production from Acinetobacter
calcoaceticus. An overall 2.4-fold increase in lipase
production and a 1.8-fold increase in specific activity
was obtained from Burkholderia cepacia after validation
of RSM in shake-flasks (Rathi et al. 2002). Abdel-Fattah
(2002) reported a 4-fold increase in lipase production in
shake-flask cultures from a thermophilic Geobacillus sp.,
using a Box–Behnken experimental design. An empirical
model was developed through RSM to describe the
relationship between the tested variables, viz. Tween-80,
olive oil, temperature, pH and enzyme activity. Lipase
production from P. fluorescens NS2W was optimized in
shake-flasks using a statistical experimental design
(Kulkarni and Gadre 2002). Cell growth and lipase
production were studied in shake-flasks and a 1-l
fermentor, using the optimized medium. The optimized

medium resulted in about a 5-fold increase in enzyme
production, compared with that obtained in the basal
medium. However, not many reports of the applicability of
the RSM approach to the optimization of lipase production
exist in the literature.

Purification strategies for bacterial lipases

Most of the commercial applications of enzymes do not
always need homogeneous preparation of the enzyme.
However, a certain degree of purity is required, depending
upon the final application, in industries such as fine
chemicals, pharmaceuticals and cosmetics. Besides, pur-
ification of the enzyme is a must for understanding the 3-D
structure and the structure–function relationships of
proteins (Taipa et al. 1992; Aires-Barros et al. 1994;
Saxena et al. 2003).

For industrial purposes, the purification strategies
employed should be inexpensive, rapid, high-yielding
and amenable to large-scale operations. They should have
the potential for continuous product recovery, with a
relatively high capacity and selectivity for the desired
product. Various purification strategies used for lipases
have been reviewed several times (Antonian 1988; Taipa
et al. 1992; Aires-Barros et al. 1994; Palekar et al. 2000;
Saxena et al. 2003), highlighting clearly the importance of
designing optimal purification schemes for various micro-
bial lipases. The extent of purification varies with the
order of the purification steps; and this aspect has been
evaluated through different purification protocols pursued
by various investigators.

Prepurification steps involve concentration of the cul-
ture supernatant containing the enzyme by ultrafiltration,
ammonium sulfate precipitation or extraction with organic
solvents. Precipitation often gives a high average yield
(Aires-Barros et al. 1994) although with limited purifica-
tion; and such enzyme preparations are apt for use in
detergent formulations. However, for certain applications,
such as synthetic reactions in pharmaceutical industry,
further purification is needed. Since lipases are known to
be hydrophobic in nature, having large hydrophobic
surfaces around the active site, the purification of lipases
may best be achieved by opting for affinity chromatog-
raphy, such as hydrophobic interaction chromatography.
The use of hydrophobic interaction chromatography has
increased tremendously in the past few years (Kordel et al.
1991; Hong and Chang 1998; Imamura and Kitaura 2000;
Queiroz et al. 2001). Affinity methods can be applied at an
early stage, but as the hydrophobic matrices are expensive,
alternatively ion exchange and gel filtration are usually
preferred after the precipitation step (Schmidt-Dannert et
al. 1994, 1996; Jose and Kurup 1999; Ghanem et al. 2000;
Imamura and Kitaura 2000; Litthauer et al. 2002; Snell-
man et al. 2002; Abdou 2003).

The usual procedures for lipase purification are some-
times troublesome, time-consuming and result in low final
yields. Novel purification steps are therefore needed to
increase the overall enzyme yields and to reduce the
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number of steps in the downstream processing. Since
lipases are different from other enzymes in terms of their
hydrophobic nature, interfacial activation phenomenon
and activity in non-aqueous systems, some novel purifica-
tion technologies have recently been applied for the
purification of lipases. These include a reversed micellar
system, membrane processes, immunopurification, hydro-
phobic interaction chromatography employing an epoxy-
activated spacer arm as a ligand, column chromatography
using polyethylene glycol (PEG)/Sepharose gel or poly
(vinyl alcohol) polymers as stationary phases and aqueous
two-phase systems (Saxena et al. 2003). Here, a brief
description of some of these novel methods is provided.

Aqueous two-phase systems

The aqueous two-phase systems used in bioseparation are
composed of two incompatible polymers (e.g. dextran vs
PEG) in water solution or in a high salt concentration (e.g.
phosphate). The partitioning of proteins in aqueous two-
phase systems depends on the physico-chemical proper-
ties, e.g. protein hydrophobicity, charge and size. The
partitioning is influenced by changing polymers, polymer
molecular mass, or pH, or by the addition of salts or
detergent to the system. The advantages of aqueous two-
phase extraction lie in volume reduction, high capacity,
rapid separations and mildness. The technique can be used
early in the purification on process streams containing
whole cells or cell debris. Compared with other separation
techniques, two-phase extraction is relatively straightfor-
ward to scale-up. The aqueous two-phase system is an
interesting technique with properties suitable for the
separation and purification of macromolecules and
particles that are difficult to purify with other existing
techniques (Albertsson et al. 1990; Gupta et al. 1999). A
number of examples of lipase purification using aqueous
two-phase systems are available in the literature. For
lipases, the hydrophobic nature of the enzyme is exploited
in aqueous two-phase systems by employing detergents or
surfactants during the purification. Terstappen et al. (1992)
studied detergent-based aqueous two-phase systems for
the purification of lipase from P. cepacia and found that all
prokaryotic lipases showed a preference for a detergent-
based coacervate phase. Queiroz et al. (1995) employed
PEG/potassium phosphate aqueous two-phase systems for
the extraction of C. viscosum lipase and concluded that
lipase partitioning could be easily manipulated by
modifying the separation conditions. Bompensieri et al.
(1996) studied lipase purification from Acinetobacter
calcoaceticus by aqueous two-phase systems using PEG,
dextran, salt or a surfactant. Two lipases, one acidic and
one neutral from Bacillus stearothermophilus SB1 were
purified using PEG and salt, with the lipases preferentially
partitioning to the PEG phase, due to hydrophobic
interactions with ethylene groups of the polymer (Bradoo
et al. 1999).

Reversed micellar systems

Liquid/liquid extraction of biomolecules using a reversed
micelle is a promising method when traditional techniques
with organic solvents are limited by protein denaturation
and solubilization (Castro and Cabral 1988). Reversed
micelles are water droplets within an organic solvent
which are stabilized by a monolayer of surfactant
molecules and can be formed by contacting an aqueous
phase with an immiscible organic phase containing these
surfactants. The inner cores contain an aqueous micro-
phase which is able to solubilize bioproducts such as
proteins. The selective separation and purification of a
lipolytic preparation from C. viscosum (Vicente et al.
1990) was achieved in AOT-based reverse micelles with
benzene as the organic solvent. The method involves a
very simple procedure and requires two steps. The first
step is based on the ability of reversed micelles to
solubilize proteins from an aqueous phase into the water
pool of the surfactant aggregates. In the second step, the
solubilized proteins are back-extracted into a new aqueous
phase by changing the interactions between the protein
and the reversed micellar system. Selective solubilization
of a mixture of proteins can be achieved by manipulating
the parameters of the systems, both in the micellar and
aqueous phases, the most important parameters being the
pH and ionic strength of the aqueous phase. The pH value
influences electrostatic interactions between the polar head
groups of the surfactant and the charged protein. Hydro-
phobic interactions may also act on the transfer of
proteins, especially the proteins, such as lipases, that
bear a hydrophobic region on their surface. Although the
reversed micelle seems to be a very promising technique
for lipase purification, it is not much exploited by
researchers, due to inefficient back-extraction protocols.
However, its high efficiency during the biocatalytic
reactions of lipases is very well documented (Skagerlind
et al. 1992; Yamada et al. 1993).

Immunopurification

Immunopurification is one of the most efficient and
selective protein-purification techniques, because of the
high specificity of the antibody–antigen reactions. Highly
specific antibodies can distinguish between very similar
antigens, which are otherwise difficult to separate by
conventional methods (Harlow and Lane 1988). Most
immunopurifications are carried out with monoclonal
antibodies or affinity-purified polyclonal antibodies,
depending on the availability of the monoclonal antibody
against the target protein and the type of contaminants
present in the crude protein preparation. Bandmann et al.
(2000) used IgG-affinity chromatography for the purifica-
tion of the modified cutinase lipase variants produced in
Escherichia coli. However, in spite of being an extremely
selective and efficient purification technique, the high
costs involved (particularly for the production of mono-
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clonal antibodies) remain the major bottleneck in the
extensive usage of this method.

Table 4 provides a comprehensive account of the
purification strategies adopted for various bacterial lipases.

Properties of bacterial lipases

Lipases from several microorganisms have been studied
extensively and, based on their properties, used in various
industries. Various properties of bacterial lipases (viz.
molecular weight, pH and temperature optima, stability,
substrate specificity) are summarized in Table 5. However,
a brief account of individual properties is presented in the
following sections.

pH and temperature kinetics

Generally, bacterial lipases have neutral (Dharmsthiti et al.
1998; Dharmsthiti and Luchai 1999; Lee et al. 1999) or
alkaline pH optima (Schmidt-Dannert et al. 1994; Sidhu et
al. 1998a, 1998b; Kanwar and Goswami 2002; Sunna et
al. 2002), with the exception of P. fluorescens SIK W1
lipase, which has an acidic optimum at pH 4.8 (Andersson
et al. 1979). Lipases from Bacillus stearothermophilus SB-
1, B. atrophaeus SB-2 and B. licheniformis SB-3 are active
over a broad pH range (pH 3–12; Bradoo et al. 1999).
Bacterial lipases possess stability over a wide range, from
pH 4 to pH 11 (Kojima et al. 1994; Wang et al. 1995;
Khyami-Horani, 1996; Dong et al. 1999).

Bacterial lipases generally have temperature optima in
the range 30–60°C (Lesuisse et al. 1993; Wang et al. 1995;
Dharmsthiti et al. 1998; Litthauer et al. 2002). However,
reports exist on bacterial lipases with optima in both lower
and higher ranges (Dharmsthiti and Luchai 1999; Lee et al.
1999; Oh et al. 1999; Sunna et al. 2002). Thermal stability
data are available only for species of Bacillus, Chromo-
bacterium, Pseudomonasand Staphylococcus. The ther-
mostability of the enzyme from Bacillus sp. was enhanced
by the addition of stabilizers such as ethylene glycol,
sorbitol, glycerol, with the enzyme retaining activity at
70°C even after 150 min (Nawani and Kaur 2000). A
fewPseudomonas lipases have been reported which are
stable at 100°C or even beyond to 150°C with a half-life of
a few seconds; (Andersson et al. 1979; Swaisgood and
Bozoglu 1984; Rathi et al. 2001). A highly thermotolerant
lipase has been reported from B. stearothermophilus, with
a half-life of 15–25 min at 100°C (Bradoo et al. 1999).

Stability in organic solvents

Stability in organic solvents is desirable in synthesis
reactions. From the available literature, it can be inferred
that lipases are generally stable in organic solvents, with
few exceptions of stimulation or inhibition. Acetone,
ethanol and methanol enhanced the lipase activity of B.
thermocatenulatus (Schmidt-Dannert et al. 1994), whereas

acetone was inhibitory for P. aeruginosa YS-7 lipase and
hexane for Bacillus sp. lipase (Sugihara et al. 1991).
Lipase from A. calcoaceticus LP009 was highly unstable
with various organic solvents (Dharmsthiti et al. 1998).

Effect of metal ions

Cofactors are generally not required for lipase activity, but
divalent cations such as calcium often stimulate enzyme
activity. This has been suggested to be due to the
formation of the calcium salts of long-chain fatty acids
(Macrae and Hammond 1985; Godtfredsen 1990). Calci-
um-stimulated lipases have been reported in the case of B.
subtilis 168 (Lesuisse et al. 1993), B. thermoleovorans ID-
1 (Lee et al. 1999), P. aeruginosa EF2 (Gilbert et al.
1991b), S. aureus 226 (Muraoka et al. 1982), S. hyicus
(Van Oort et al. 1989), C. viscosum (Sugiura et al. 1974)
and Acinetobacter sp. RAG-1 (Snellman et al. 2002). In
contrast, the lipase from P. aeruginosa 10145 (Finkelstein
et al. 1970) is inhibited by the presence of calcium ions.
Further, lipase activity is in general inhibited drastically by
heavy metals like Co2+, Ni2+, Hg2+and Sn2+and slightly
inhibited by Zn2+ and Mg2+ (Patkar and Bjorkling 1994).
However, the lipase from A. calcoaceticus LP009 was
stimulated by the presence of Fe3+ and its activity was
reduced by less than 20% on addition of various other ions
(Dharmsthiti et al. 1998).

Lipase inhibitors

Lipase inhibitors have been used in the study of structural
and mechanistic properties of lipases. Further, the search
for lipase inhibitors is also of pharmacological interest.
Lipase inhibitors are used for designing drugs for the
treatment of obesity and the problem of acne. Following is
an account of general inhibitors. Broadly, inhibitors of
enzymes are classified as reversible or irreversible. The
reversible inhibitors can be further classified as non-
specific and specific reversible inhibitors.

Non-specific reversible inhibitors

Compounds that do not act directly at the active site, but
inhibit lipase activity by changing the conformation of
lipase or interfacial properties are defined as non-specific
inhibitors. Surfactants (Iizumi et al. 1990; Patkar and
Bjorkling 1994), bile salts (Borgstrom and Donner 1976;
Wang et al. 1999) and proteins (Gargouri et al. 1984;
Bezborodov et al. 1985) belong to this group of inhibitors.
However, surfactants and bile salts activate the enzyme in
some cases.
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Table 4 Purification strategies for bacterial lipases. Fold increase is the ratio of specific activity of the final purified product to the initial
specific activity; and yield is the ratio of initial enzyme titer to the final titer obtained after the purification process

Bacterium Purification technique Fold
increase/yield

Reference

Acinetobacter spp
A. calcoaceticus
AAC323-1

Triton X-114-based aqueous two-phase partition 68-fold/81% Bompensieri et al. 1996

A. calcoaceticus
LP009

Ultrafiltration, gel filtration on Sephadex G-100 n.s. Pratuangdejkul
and Dharmsthiti 2000

A. radioresistens
CMC-1

Ammonium sulfate, PD-10 column, Mono Q,
phenyl-Sepharose CL-4B column chromatography

64-fold/13% Hong and Chang
1998

Acinetobacter
sp. RAG-1

Mono Q, butyl Sepharose column, elution with Triton-X 100 10-fold/22% Snellman et al. 2002

Bacillus spp
Bacillus sp. Ammonium sulfate, acrinol treatment, DEAE-Sephadex A-50,

Toyopearl HW-55F, butyl Toyopearl 650 M
7,760-fold/10% Sugihara et al. 1991;

Palekar et al. 2000
Bacillus sp. Ammonium sulfate, phenyl Sepharose column 175-fold/15.6% Nawani and Kaur

2000
Bacillus sp. Acetone fractionation, two acetone precipitations,

octyl-Sepharose CL-4B, Q-Sepharose, Sepharose-12
3,028-fold/20% Imamura and

Kitaura 2000
Bacillus sp.
strain 398

Ammonium sulfate, DEAE-Sepharose, butyl Toyopearl,
DEAE-Sepharose

10,300-fold/30% Kim et al. 1994

Bacillus
sp. THL027

Ultrafiltration, Sephadex G-100 2.6-fold/n.s. Dharmsthiti and
Luchai 1999

B. alcalophilus 50% ammonium sulfate, Sephadex G-100 111-fold/5% Ghanem et al. 2000
B. pumilus Ammonium sulfate fractionation, gel filtration on

Sephadex G-100
75-fold/n.s. Jose and Kurup 1999

B. stearothermophilus
(recombinant lipase)

CM-Sepharose, DEAE Sepharose 11.6-fold/62.2% Kim et al. 2000

B. thermocatenulatus Calcium soap, hexane extraction, methanol precipitation,
Q-Sepharose (ion exchange)

67-fold/11% Schmidt-Dannert
et al. 1994

B. thermocatenulatus
(recombinant lipase)

Cell breakage with heat precipitation, S-Sepharose,
Q-Sepharose, phenyl-Sepharose

329-fold/49% Schmidt-Dannert
et al. 1996

Chromobacterium spp
C. viscosum Alginate (macroaffinity ligand), elution by NaCl, 0.5 K 1.76-fold/ 87% Sharma and

Gupta 2001
C. viscosum Lipase A AOT-isooctane reverse micelle system 4.3-fold/91% Vicente et al. 1990
C. viscosum Lipase B AOT-isooctane reverse micelle system, back-extraction

from micellar phase by 2.5% ethanol at pH 9.0
3.7-fold/75% Vicente et al. 1990

Pseudomonas spp
Pseudomonas sp. G6 Silicone 21 defoamer, ammonium sulfate (60% saturation)

fractionation
n.s./83% Kanwar et al. 2002

Pseudomonas sp. Extraction, Bio-gel P-10 chromatography, Superose
12B chromatography

37-fold/64.3% Dong et al. 1999

Pseudomonas
sp. KWI-56

Acetone precipitation, gel filtration by HPLC 14-fold/4% Iizumi et al. 1990

Pseudomonas
sp. ATCC 21808

Q-Sepharose, octyl-Sepharose, elution with isopropanol 159-fold/56% Kordel et al. 1991

Pseudomonas
sp. Yo103

Ammonium sulfate precipitation, DEAE- cellulose,
Sephadex G-200

62-fold/3.7% Kim et al. 1997

P. aeruginosa Ammonium sulfate precipitation, hydroxyapatite column
chromatography

518-fold/n.s. Sharon et al. 1998

P. aeruginosa EF2 Ultrafiltration, anion-exchange chromatography (Mono-Q),
gel filtration (Superose) FPLC

31-fold/18% Palekar et al. 2000

P. cepacia Polyoxyethylene detergent C14EO6-based aqueous two-phase
partitioning

24-fold/76% Terstappen et al.
1992

P. fluorescens Ultrafiltration, ammonium sulfate precipitation,
DEAE-Toyopearl 650 M, phenyl Toyopearl 650 M

6.1-fold/42% Kojima et al. 1994
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Specific inhibitors

Specific inhibitors are those compounds, which directly
interact with the active site of the enzyme. Such inhibitors
can be either reversible or irreversible. Specific reversible
inhibitors include: (1) boronic acid derivatives, which
form reversible but long-lived complexes with the active-
site serine of lipases (Lolis and Petsko 1990) and (2)
substrate analogues including triacylglyceride analogue
glycerol triether, which is also a competitive inhibitor of
pancreatic lipase (Lengsfeld and Wolfer 1988). However,
the affinity of this compound for the enzyme is not high
enough, compared with the substrate, and hence it is
difficult to obtain useful information from these analogues.
Specific irreversible inhibitors generally react with the
amino acids at or near the active site and thus inhibit the
catalytic activity. Further, such inhibitors may also disturb
sulphydryl bonds and thus modify the protein conforma-
tion.

Lipases belong to the class of serine hydrolases with the
catalytic triad as Ser-His-Asp/Glu. Therefore, serine
inhibitors are potential irreversible active-site lipase
inhibitors, e.g. phenylmethylsulfonyl fluoride (PMSF),
phenylboronic acid, diethylp-nitrophenyl phosphate. In
contrast, the lipase from A. calcoaceticus LP009 was not
inhibited by PMSF (Dharmsthiti et al. 1998). Generally,
lipases are not sulphydryl proteins; and thus in most
lipases neither free –SH nor S–S bridges are important for
their catalytic activity. This is substantiated by the use of
2-mercaptoethanol,p-chloromercuric benzoate and iodoa-
cetate, which have no detectable effect on lipase from C.
viscosum (Sugiura et al. 1974), S. aureus 226 (Muraoka et
al. 1982) and A. calcoaceticus LP009 (Dharmsthiti et al.
1998). Further, EDTA does not affect the activity of most

lipases (Gilbert et al. 1991b; Sugihara et al. 1991; Kojima
et al. 1994). However, it is inhibitory to lipases from P.
aeruginosa 10145 (Finkelstein et al. 1970), Pseudomonas
sp. nov. 109 (Ihara et al. 1991), Bacillus sp. THL027
(Dharmsthiti and Luchai 1999) and A. calcoaceticus
LP009 (Dharmsthiti et al. 1998). Tryptophan residues
play an important role in maintaining the conformation of
lipases (Patkar and Bjorkling 1994). Modification of
tryptophan residues in lipases from P. fragi CRDA 037
(Schuepp et al. 1997) and P. fluorescens (Sugiura et al.
1977) by N-bromosuccinimide leads to decreased lipase
activity.

Substrate specificity

Microbial lipases may be divided into three categories:
namely nonspecific, regiospecific and fatty acid-specific,
based on the substrate specificity. Nonspecific lipases act
at random on the triacylglyceride molecule and result in
the complete breakdown of triacylglyceride to fatty acid
and glycerol. Examples of this group of lipases include
those from S. aureus, S. hyicus (Davranov 1994; Jaeger et
al. 1994),Corynebacterium acnes (Hassing 1971) and
Chromobacterium viscosum (Jaeger et al. 1994).

In contrast, regiospecific lipases are 1,3-specific lipases
which hydrolyze only primary ester bonds (i.e. ester bonds
at atoms C1 and C3 of glycerol) and thus hydrolyze
triacylglyceride to give free fatty acids, 1,2(2,3)-diacyl-
glyceride and 2-monoacylglyceride. Extracellular bacterial
lipases are regiospecific, e.g. those from Bacillus sp.
(Sugihara et al. 1991; Lanser et al. 2002), B. subtilis 168
(Lesuisse et al. 1993), Bacillus sp. THL027 (Dharmsthiti
and Luchai 1999), Pseudomonas sp. f-B-24 (Yamamoto

Bacterium Purification technique Fold
increase/yield

Reference

P. luteola Two-phase partitioning, anion exchange, exclusion
chromatography

17-fold/16% Litthauer et al. 2002

P. pseudo-
alcaligenes
F-111

Acetone precipitation, Sephadex G-100 chromatography,
fractogel phenyl 650 M chromatography, Sephadex G-100
chromatography

144-fold/15% Lin et al. 1996

P. pseudomallei Ammonium sulfate, Sephadex G-150 n.s. Kanwar and
Goswami 2002

P. putida 3SK DEAE-Sephadex A-50, Sephadex G-100 5.3-fold/21% Lee and Rhee 1993
Serratia
marcescens

Ion-exchange chromatography, gel filtration n.s./45.4% Abdou 2003.

Staphylococcus spp
S. haemolyticus 80% ammonium sulfate, DEAE-Sepharose CL-6B column,

CM-Sepharose CL-6B, resource S column
(ion-exchange chromatography)

n.s./42% Oh et al. 1999

S. warneri 863 Nickel–NTA affinity chromatography, hydroxyapatite
column (HIC)

n.s./40% Van Kampen et al. 2001

His6-S. aureus

(recombinant lipase)

Protamine sulfate, ammonium sulfate, nickel nitrilotriacetate,
hydroxyapatite

42-fold/41% Simons et al. 1996

Table 4 (continued)
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and Fujiwara 1988, 1995), P. aeruginosa EF2 (Gilbert et
al. 1991b) and P. alcaligenes 24 (Misset et al. 1994).

The third group comprises fatty acid-specific lipases,
which exhibit a pronounced fatty acid preference.Achro-
mobacterium lipolyticum is the only known bacterial
source of a lipase showing fatty acid specificity (Davranov
1994). However, lipases from Bacillus sp. (Wang et al.
1995), P. alcaligenes EF2 (Gilbert et al. 1991a, 1991b) and
P. alcaligenes 24 (Misset et al. 1994) show specificity for
triacylglycerides with long-chain fatty acids, while lipases
from B. subtilis 168 (Lesuisse et al. 1993), Bacillus sp.
THL027 (Dharmsthiti and Luchai 1999), P. aeruginosa
10145 (Finkelstein et al. 1970), P. fluorescens (Sugiura et
al. 1977), Pseudomonas sp. ATCC 21808 (Kordel et al.
1991), C. viscosum (Horiuti and Imamura 1977) and
Aeromonas hydrophila (Angultra et al. 1993) prefer small-
or medium-chain fatty acids. Lipase from S. aureus 226
shows a preference for unsaturated fatty acids (Muraoka et
al. 1982).

Another important property of lipases is their enantio-/
stereoselective nature, wherein they possess the ability to
discriminate between the enantiomers of a racemic pair.
Such enantiomerically pure or enriched organic com-
pounds are steadily gaining importance in the chemistry of
pharmaceutical, agricultural, synthetic organic and natural
products (Reetz 2001). Mostly lipases from Pseudomonas
family fall in this category (Reetz and Jaeger 1998). The
stereospecificity of a lipase depends largely on the
structure of the substrate, interactions at the active site
and the reaction conditions (Lavayre et al. 1982; Cambou
and Klibanov 1984; Muralidhar et al. 2002). A number of
examples of biocatalysis by lipases leading to the synthe-
sis of important enantiomers are available in the literature.
The lipase from P. cepacia is a popular catalyst in organic
synthesis (Kazlauskas and Bornscheuer 1998) for the
kinetic resolution of racemic mixtures of secondary
alcohols in hydrolysis, esterification and transesterification
(Petschen et al. 1996; Takagi et al. 1996; Schulz et al.
2000). Lipases fromPseudomonas spp are used for the
synthesis of chiral intermediates in the total synthesis of

the antimicrobial compound chaungxixmyxin and the
potent antitumor agent epothilone. Lipases are also used in
the efficient production of enantiopure (S)-indanofan, a
novel herbicide used against grass weeds in paddy fields.
The synthesis of flavor and fragrance compounds such as
menthol has been reported, using lipase from B. cepacia
(Jaeger and Eggert 2002).

Thus, bacterial lipases are highly robust enzymes, since
they are active over a wide range of pH and temperature.
They belong to the group of serine hydrolases and are not
sulfahydryl proteins. They may be regiospecific or non-
specific towards triacylglycerols. Some lipases also
possess fatty acid-specificity with reference to the car-
bon-chain length. Besides these features, the enantiose-
lective nature of lipases provides them with an edge over
other hydrolases, particularly in the field of organic
chemistry and pharmaceuticals.

Novel developments in the field of lipases

Directed evolution of enzymes

In the past few decades, biocatalysts have been success-
fully exploited for the synthesis of complex drug
intermediates, specialty chemicals and even commodity
chemicals in the pharmaceutical, chemical and food
industries. Recent advances in recombinant DNA tech-
nologies, high-throughput technologies, genomics and
proteomics have fuelled the development of new catalysts
and biocatalytic processes. In particular, directed evolution
has emerged as a powerful tool for biocatalyst engineering
(Zhao et al. 2002), in order to develop enzymes with novel
properties, even without requiring knowledge of the
enzyme structure and catalytic mechanisms. The approach
of directed evolution has been reviewed several times by a
number of researchers (Arnold 1996; Reetz and Jaeger
1999; Petrounia and Arnold 2000; Tobin et al. 2000;
Jaeger et al. 2001).

Table 6 Directed evolution of lipases. ee Enantiomeric excess

Microbial
source

Type of lipase Strategies employed Change in property Reference

B. cepacia Lipase (intermediate for synthesis
of Paclitaxel used for cancer
treatment)

– Increase inee value >99.5%;
Bristol-Myers Squibb, USA

Liese et al. 2001

B. plantarii Lipase (intermediate for pharma-
ceuticals and insecticides)

– Increase inee value >99%;
BASF, Germany

Liese et al. 2001

P. aeruginosa Lipase Random mutagenesis (substitu-
tion of Ser for Asn-163, Pro for
Leu-264)

Increase in thermal stability of
the enzyme

Shinkai et al. 1996

P. aeruginosa Lipase Error-prone PCR for random
mutagenesis

Increase inee from 2% to
>90% forp-nitrophenyl, 2-
methyldecanoate

Jaeger and Reetz
2000

Serratia
marcescens

Lipase (intermediate in the syn-
thesis of dilitazem)

– Increase inee value >99.9%;
Tanabe Seiyaku Co., Japan;
DSM, The Netherlands

Liesse et al. 2001
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In the field of lipase research, directed evolution has
been employed for the creation of enantioselective
catalysts for organic synthesis (Table 6). The first and
most comprehensive study with respect to directed
evolution of an enantioselective enzyme was performed
with a lipase from P. aeruginosa (Jaeger et al. 2001). They
applied this approach of directed evolution in combination
with a newly developed screening method to generate
lipases with improved enantioselectivity. A bacterial lipase
from P. aeruginosa was evolved towards a model
substrate, 2-methyldecanoic acid p-np ester, to yield in a
lipase mutant showing >90% enantiomeric excess, as
compared with 2% for the wild-type lipase (Jaeger and
Reetz 2000). Recently, this group has also used a B.
subtilis lipase as the catalyst in the asymmetric hydrolysis
of meso-1,4-diacetoxy-2-cyclopentene, with the formation
of chiral alcohols (Jaeger et al. 2001).

Metagenome approach

Microbial diversity is a major resource for biotechnologi-
cal products and processes. The biosphere is dominated by
microorganisms, yet most microbes in nature have not
been studied. This is mainly due to the fact that,
historically, the only way to reliably characterize a
microorganism was by isolation of a pure culture.
However, the vast majority of microbes present in a
single environmental niche are not culturable in the
laboratory and it is estimated that, on average, less than
1% have ever been identified (Lorenz et al. 2002). An
alternative approach is to use the genetic diversity of the
microorganisms in a certain environment as a whole (the
so-called “metagenome”) to encounter new or improved
genes and gene products for biotechnological purposes
(Henne et al. 2000). The sequencing of large metagenomic
DNA fragments has fortuitously revealed numerous open
reading frames, many of them encoding enzymes such as
chitinase, lipase, esterase, protease, amylase, Dnase,
xylanase, etc. (Lorenz et al. 2002). Henne et al. (2000)
screened environmental DNA libraries prepared from three
different soil samples for genes conferring lipolytic
activity on E. coli clones and identified four clones
harboring lipase and esterase activities. Bell et al. (2002)
described a PCR method suitable for the isolation of lipase
genes directly from environmental DNA, using primers
designed on the basis of lipase consensus sequences.

Conclusions

Lipases are the biocatalysts of choice for the present and
future, owing to their properties such as activity over a
wide temperature and pH range, substrate specificity,
diverse substrate range and enantioselectivity. Their
importance is increasing by the day in several industries,
such as food, detergents, chemicals, pharmaceuticals, etc.
However, the commercial exploitation of lipases is still in
its infancy, due to the economics of the lipase industry.

Thus, there is a need today to develop production and
downstream-processing systems which are cost-effective,
simple and not time-consuming. The growing demand for
lipases has shifted the trend towards prospecting for novel
lipases, improving the properties of existing lipases for
established technical applications and producing new
enzymes tailor-made for entirely new areas of application.
This has largely been possible due to outstanding events in
the field of molecular enzymology. The number of novel
microbial lipases being cloned and biochemically char-
acterized is on the rise. Rational protein engineering, by
way of mutagenesis and directed evolution, has provided a
new and valuable tool for improving or adapting enzyme
properties to the desired requirements. The upcoming
trend to access novel natural sequenced space, via the
direct cloning of metagenomic DNA, is significantly
contributing to the screening and identification of hitherto
unexplored microbial consortia for valuable biocatalysts.
However, the success of these techniques demands the
development of faster high-throughput screening systems.
Thus, the modern methods of genetic engineering
combined with an increasing knowledge of structure and
function are allowing further adaptation to industrial needs
and the exploration of novel applications.
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