1 Leisingera nanhaiensis sp. nov., isolated from marine sediment of the

- 2 South China Sea
- 3 Fengqin Sun*, Baojiang Wang*, Xiupian Liu, Qiliang Lai, Yaping Du, Guangyu Li, Jie Luo
- 4 and Zongze Shao**
- 5 Key Laboratory of Marine Biogenetic Resources, the Third Institute of Oceanography, State
- 6 Oceanic Administration, People's Republic of China
- 7 ***Co-first author**: Fengqin Sun and Baojiang Wang contributed equally to the paper.
- 8 **Corresponding author: Zongze Shao. Tel: +86-592-2195321. Fax: +86-592-2085376.
- 9 E-mail: <u>shaozz@163.com</u>
- 10 Subjective category: Proteobacteria
- 11 Running title: Leisingera nanhaiensis sp. nov., from marine sediment
- 12
- 13 The GenBank accession number for the 16S rRNA gene sequence of Leisingera nanhaiensis
- 14 NH52 F^{T} is FJ232451.
- 15 A table comparing the cellular fatty acid content of strain $NH52F^{T}$ with that of other related
- 16 recognized species is available as supplementary data in IJSEM Online.
- 17
- 18

19	Summary: An aerobic, Gram-staining-negative, motile, rod-shaped bacterium, strain NH52F ^T ,
20	was isolated from a sandy sediment sample in the South China Sea. On M2 agar medium (a
21	complex medium), colonies were beige in colour. The isolate showed highest 16S rRNA gene
22	sequence similarities to members of the genera Leisingera (96.7% similarity), Phaeobacter
23	(95.4-96.0%) and Marinovum (94.1%). Phylogenetic analysis based on 16S rRNA gene sequence
24	indicated that strain NH52F ^T formed a distinct cluster with <i>Leisingera methylohalidivorans</i> MB2 ^T
25	and Leisingera aquimarina LMG 24366 ^T . Optimal growth was observed at pH 7.0-8.5 and 25°C
26	and requires the presence of 1-4% (w/v) NaCl. The major fatty acids were $C_{18:1}\omega7c$, $C_{16:0}$ 2-OH,
27	$C_{10:0}$ 3-OH, $C_{12:0}$ 3-OH, $C_{16:0}$ and 11-methyl $C_{18:1}\omega7c$. The DNA G+C content was 60.5%. The
28	phylogenetic and chemotaxonomic characteristics of strain $NH52F^{T}$ were similar to those of the
29	genus Leisingera. However, the differences in phenotypic properties and the similarity value
30	between 16S rRNA gene, demonstrated the isolate differs from the recognized Leisingera species.
31	On the basis of phenotypic, chemotaxonomic and phylogenetic data, this organism should be
32	classified as a representative of a novel species in the genus Leisingera, for which the name
33	Leisingera nanhaiensis sp. nov. is proposed. The type strain is NH52F ^T (=LMG 24841 ^T =CCTCC
34	AB 208316^{T} =MCCC 1A04178 ^T).

36	The g	genus	Leisin	igera	was	proposed	d by	Schaefer	et al.	(20	<mark>02) 1</mark>	for a	ccom	modating
37	Gram-sta	ain-neg	gative,	aerobi	ic, ro	d-shaped	marine	e bacteria	which	are	able	to gr	ow o	n methyl
38	halides a	is a so	le carb	on sou	urce. l	Recently,	the em	rended de	scriptio	n of	the ge	enus <i>I</i>	Leisin	g <i>era</i> was
39	given b	y Ma	rtens	et al.	. (20	06) and	Vand	lecandelae	ere <i>et</i>	al.	(2008	3), w	ith a	dditional
40	chemota	xonom	ic data	a and a	some	physiolo	gical a	nd bioche	mical f	eatur	es inv	olved	l. To	data, the

41	genus includes two species of marine bacteria, Leisingera methylohalidivorans and Leisingera
42	aquimarina (Schaefer et al., 2002; Vandecandelaere et al., 2008). The former species was isolated
43	from a tide pool off the coast of California. The latter species was isolated from a marine
44	electroactive biofilm grown on a stainless steel cathode (Genoa, Italy). Comparative 16S rRNA
45	gene sequence analysis has shown that the genus Leisingera is phylogenetically closely related to
46	the genera Marinovum and Phaeobacter within the Roseobacter clade (Schaefer et al., 2002;
47	Martens <i>et al.</i> , 2006). Here we describe a bacterial strain, $NH52F^{T}$ as the type strain of a novel
48	species of this genus on the base of physiological and biochemical characterization,
49	chemotaxonomic properties and phylogenetic analysis of the 16S rRNA gene sequences.
50	Strain NH52F ^T was isolated from a brown sandy sediment sample of the South China Sea (109°
51	40,102' F. 06° 5,001' N), which was collected from a water depth of 157 m. In the laboratory, the
51	40.102 E, 00 5.901 W), which was concerce from a water deput of 157 m. In the faboratory, the
52	sediment was suspended and diluted (1:100) using the sterilized seawater, and then spread onto
52 53	sediment was suspended and diluted (1:100) using the sterilized seawater, and then spread onto M2 agar plates, incubated at 25 °C for 1 week. Composition of the medium (M2) was $(l^{-1}$ sea
52 53 54	sediment was suspended and diluted (1:100) using the sterilized seawater, and then spread onto M2 agar plates, incubated at 25 °C for 1 week. Composition of the medium (M2) was (l^{-1} sea water): 5 g CH ₃ COONa, 0.5 g peptone, 0.5 g yeast extract, 0.5 g glucose, 0.5 g sucrose, 0.5 g
52 53 54 55	sediment was suspended and diluted (1:100) using the sterilized seawater, and then spread onto M2 agar plates, incubated at 25 °C for 1 week. Composition of the medium (M2) was (l^{-1} sea water): 5 g CH ₃ COONa, 0.5 g peptone, 0.5 g yeast extract, 0.5 g glucose, 0.5 g sucrose, 0.5 g starch, 0.05 g trisodium citrate, 0.05 g malic acid, 0.05 g potassium sodium tartrate, 1.0 g NH ₄ NO ₃ ,
52 53 54 55 56	sediment was suspended and diluted (1:100) using the sterilized seawater, and then spread onto M2 agar plates, incubated at 25 °C for 1 week. Composition of the medium (M2) was (I^{-1} sea water): 5 g CH ₃ COONa, 0.5 g peptone, 0.5 g yeast extract, 0.5 g glucose, 0.5 g sucrose, 0.5 g starch, 0.05 g trisodium citrate, 0.05 g malic acid, 0.05 g potassium sodium tartrate, 1.0 g NH ₄ NO ₃ , 0.2 g NH ₄ Cl and 15 g agar, adjusted to pH 7.5~7.6. Strain NH52F ^T was picked out and streaked
 52 53 54 55 56 57 	sediment was suspended and diluted (1:100) using the sterilized seawater, and then spread onto M2 agar plates, incubated at 25 °C for 1 week. Composition of the medium (M2) was (l^{-1} sea water): 5 g CH ₃ COONa, 0.5 g peptone, 0.5 g yeast extract, 0.5 g glucose, 0.5 g sucrose, 0.5 g starch, 0.05 g trisodium citrate, 0.05 g malic acid, 0.05 g potassium sodium tartrate, 1.0 g NH ₄ NO ₃ , 0.2 g NH ₄ Cl and 15 g agar, adjusted to pH 7.5~7.6. Strain NH52F ^T was picked out and streaked for purity three times on fresh M2 agar medium and preserved as a 20% (v/v) glycerol suspension
 52 53 54 55 56 57 58 	sediment was suspended and diluted (1:100) using the sterilized seawater, and then spread onto M2 agar plates, incubated at 25 °C for 1 week. Composition of the medium (M2) was (I^{11} sea water): 5 g CH ₃ COONa, 0.5 g peptone, 0.5 g yeast extract, 0.5 g glucose, 0.5 g sucrose, 0.5 g starch, 0.05 g trisodium citrate, 0.05 g malic acid, 0.05 g potassium sodium tartrate, 1.0 g NH ₄ NO ₃ , 0.2 g NH ₄ Cl and 15 g agar, adjusted to pH 7.5~7.6. Strain NH52F ^T was picked out and streaked for purity three times on fresh M2 agar medium and preserved as a 20% (v/v) glycerol suspension at -80 °C. Cell morphology and motility was observed by phase-contrast microscopy (model 50i;
 52 53 54 55 56 57 58 59 	sediment was suspended and diluted (1:100) using the sterilized seawater, and then spread onto M2 agar plates, incubated at 25 °C for 1 week. Composition of the medium (M2) was (I^{-1} sea water): 5 g CH ₃ COONa, 0.5 g peptone, 0.5 g yeast extract, 0.5 g glucose, 0.5 g sucrose, 0.5 g starch, 0.05 g trisodium citrate, 0.05 g malic acid, 0.05 g potassium sodium tartrate, 1.0 g NH ₄ NO ₃ , 0.2 g NH ₄ Cl and 15 g agar, adjusted to pH 7.5~7.6. Strain NH52F ^T was picked out and streaked for purity three times on fresh M2 agar medium and preserved as a 20% (v/v) glycerol suspension at -80 °C. Cell morphology and motility was observed by phase-contrast microscopy (model 50i; Nikon) and transmission electron microscopy (model JEM-1230; JEOL), using cells from the
 52 53 54 55 56 57 58 59 60 	sediment was suspended and diluted (1:100) using the sterilized seawater, and then spread onto M2 agar plates, incubated at 25 °C for 1 week. Composition of the medium (M2) was ($I^{=1}$ sea water): 5 g CH ₃ COONa, 0.5 g peptone, 0.5 g yeast extract, 0.5 g glucose, 0.5 g sucrose, 0.5 g starch, 0.05 g trisodium citrate, 0.05 g malic acid, 0.05 g potassium sodium tartrate, 1.0 g NH ₄ NO ₃ , 0.2 g NH ₄ Cl and 15 g agar, adjusted to pH 7.5~7.6. Strain NH52F ^T was picked out and streaked for purity three times on fresh M2 agar medium and preserved as a 20% (v/v) glycerol suspension at -80 °C. Cell morphology and motility was observed by phase-contrast microscopy (model 50i; Nikon) and transmission electron microscopy (model JEM-1230; JEOL), using cells from the early exponential phase grown on M2 agar.

62 μm in size (Fig. 1). Colonies were circular, smooth, slightly convex and beige- to cream-coloured

on M2 medium. 63

64	Temperature range for growth was determined between 4 and $45\Box$. The initial growth pH range
65	(3-10) was tested by using 5 ml HLB medium supplemented with 200 µl M2 medium, adjusted
66	with NaOH (5N) and HCl (5M) solution. HLB was modified from Luria-Bertani (LB) medium
67	(Sambrook <i>et al.</i> , 1989), with the concentration of NaCl increased to 30 g l^{-1} . The salinity range
68	supporting growth was determined at various NaCl concentrations (0.5-25%, w/v) on M2. The
69	requirement for Na ⁺ was studied on M2 agar medium in the absence of Na ⁺ , with the modification
70	that distilled water was used instead of sea water and Na^+ was replaced by K ⁺ . Each experiment
71	was incubated at $25\square$ except temperature assay. Oxidase reaction was tested by using oxidase
72	reagent (bioMérieux). Catalase activity was tested using a 3.0 $\%~H_2O_2$ solution. Hydrolysis of
73	starch, Tween 20, 40 and 80 were determined as described previously by Cowan & Steel (1965).
74	Other physiological and biochemical tests were performed with the API 20E and API 20NE
75	systems (bioMérieux) and the inoculum was prepared by suspending cells in a 3% (w/v) NaCl
76	solution. The API ZYM system (bioMérieux) was used to determine the activity of some enzymes.
77	Production of bacteriochlorophyll α (Bchl α) was determined by spectrophotometric analysis as
78	described by Martens et al. (2006). The utilization of various substrates for growth was detected
79	by spectrophotometer at 600nm after incubation for 3 days at 25°C. The following single
80	substrates were added to the MM medium (1^{-1} , 7.0 g MgSO ₄ ·7H2O, 24 g NaCl, 0.35 g KCl, 1.0 g
81	NH ₄ NO ₃ , 1.0 g KH ₂ PO ₄ , 1.0 g K ₂ HPO ₄ , 0.08 g KBr, 2.6 mg NaF, 27 mg H ₃ BO ₃ , 31 mg NaHCO ₃ ,
82	0.05 g CaCl ₂ , 2.8 mg FeSO ₄ ·7H ₂ O, 0.1 mg ZnSO ₄ ·7H ₂ O, 24 mg SrCl ₂ ·6H ₂ O) as sole carbon
83	sources to a final concentration of 1.0 g l ⁻¹ : D-glucose, D-fructose, D-galactose, sucrose, trehalose,
84	L-rhamnose, D-sorbitol, cellobiose, acetate, citrate, succinate, β-hydroxy butyric acid,

85 D-glucosamine, L-glutamate, serine, leucine, methionine, betaine and glycerol.

86	Susceptibility to different antibiotics was tested on M2 agar plates by using discs (OXOID)
87	diffusion method at the following compounds: ceftriaxone (30 μ g), cephradine (30 μ g),
88	chloramphenicol (30 μ g), gentamicin (10 μ g), erythromycin (15 μ g), cefoperazone (75 μ g),
89	ciprofloxacin (5 μ g), clindamycin (2 μ g), doxycycline hydrochloride (30 μ g), neomycin (10 μ g),
90	tetracycline (30 µg), cephalexin (30 µg), ampicillin (10 µg), furazolidone (15 µg), metronidazole
91	(5 μ g), cephazolin (30 μ g), lincomycin (2 μ g), minocycline (30 μ g), norfloxacin (10 μ g),
92	kanamycin (30 µg), vancomycin (30 µg), trimethoprim (25 µg), piperacillin (100 µg), ofloxacin (5
93	μg), rifampicin (5 μg), carbenicillin (100 μg), polymyxin B (300 U), streptomycin (10 μg),
94	oxacillin (1 μg) and penicillin G (10 U). The plates were incubated at 25 $^{\circ}\text{C}$ for 3 days
95	The cellular polar lipids were extracted according to the procedures described by Komagata &
96	Suzuki (1987) and separated on silica gel plates (DC Kieselgel 60F; Merck) by using
97	two-dimensional thin-layer chromatography (TLC) and identified on the basis of their reaction
98	with appropriate detection reagents (Vaskovsky et al., 1975; Ryu & MacCoss, 1979).
99	Phospholipids were detected as blue spots on a white ground by spraying Dittmer-Lester reagent.
100	The presence of amino-containing lipids was identified by spraying ninhydrin reagent. Cell
101	biomass of strain NH52F ^T for polar lipid analysis was obtained from cultures grown in M2 at
102	25 °C.
103	For cellular fatty acid analysis, strain NH52F ^T was harvested from marine agar 2216 agar plates
104	(MA; Difco) after cultivation for 3 days at 25 °C. The fatty acids were extracted according to the
105	standard protocol of the Microbial Identification System (MIDI, Sherlock). Analysis of the fatty
106	acid methyl esters were performed on a gas chromatography (GC 6850; Agilent), and peaks were

107	identified with MIDI software (version 6.0). The predominant cellular fatty acids of strain
108	NH52F ^T were the straight-chain unsaturated and saturated fatty acids and hydroxy fatty acids. The
109	compositions of fatty acids were $C_{12:0}$ 3-OH (2.9%), $C_{16:0}$ (3.0%), 11-methyl $C_{18:1}\omega 7c$ (3.0%),
110	$C_{10:0}$ 3-OH (3.9%), $C_{16:0}$ 2-OH (5.4%), $C_{18:1}\omega7c$ (71.9%) and an unknown fatty acid of equivalent
111	chain-length 11.799 (5.7%). A relatively large amount of $C_{18:1}\omega 7c$ is a feature of majority of
112	species within the Alphaproteobacteria (Martens et al., 2006). This fatty acid profile was in good
113	agreement with those of the type strains of the genus Leisingera, although there were differences
114	in the proportions of some fatty acids. The fatty acid profiles of strain $NH52F^{T}$ and recognized
115	species of the related genera are given in Supplementary Table S1 available on IJSEM Online.
116	Cell mass of strain NH52F ^T for DNA extraction was harvested from M2 plates after incubation
117	at 25 °C for 3 days. Genomic DNA was extracted according to the method described by Ausubel et
118	al. (1995). The 16S rRNA gene was PCR-amplified with two universal primers (Lane, 1991). The
119	purification and sequencing of PCR product were performed as described by Liu & Shao (2005).
120	A BLAST analysis with the nearly complete 16S rRNA gene sequence (1429 nt) of strain NH52F ^T
121	was performed to obtain the similar sequences. The determined sequences were manually aligned
122	by using DNAMAN (Version 6; Lynnon Biosoft) and evolutionary distances were then computed
123	according to the Kimura two-parameter model analysis (Kimura, 1980) also carried out by using
124	the DNAMAN program. A phylogenetic tree was constructed by using the neighbour-joining
125	method (Saitou & Nei, 1987) and evaluated by bootstrap analysis based on 1000 replicates.
126	The DNA G+C content (mol %) was determined to be 60.5% by reverse high-performance
127	liquid chromatography (HPLC) according to the method of Tamaoka & Komagata (1984). This
128	value was similar to that of the genus Phaeobacter (55.7-64.9 mol%), Marinovum (60 mol%) and

129 *Leisingera* (60.5 \pm 0.2 mol%), which is lower than the 10 mol% difference in DNA G+C content 130 recommended for genus demarcation (Stackebrandt & Liesack, 1993), thus it is reasonable to 131 place strain NH52F^T in the genus *Leisingera*.

132	Lists of phenotypic properties differentiating strain NH52F ^T from closely related members
133	within the <i>Roseobacter</i> clade were shown in Table 1. The major properties of $NH52F^{T}$ are in
134	accordance with those of emended description of the genus Leisingera (Schaefer et al., 2002;
135	Vandecandelaere et al., 2008), including the inability to hydrolyse aesculin or gelatin, no indole
136	production or acid production from glucose, failure to assimilate D-mannose and maltose, the
137	presence of leucine arylamidase, susceptibility to erythromycin, and resistibility to vancomycin,
138	trimethoprim and clindamycin. Accordingly, it is appropriate that NH52F ^T be classified in the
139	genus Leisingera.
140	Comparative 16S rRNA gene sequence analysis showed that strain NH52F ^T was closely related
141	to the members of the genera Leisingera, Phaeobacter and Marinovum within the family
142	<i>Rhodobacteraceae</i> . Phylogenetic analysis indicated that strain NH52F ^T and recognized <i>Leisingera</i>
143	species formed a distinct cluster with a bootstrap resampling value of 51% (Fig. 2). Trees with
144	similar topology were also generated using the maximum-likelihood and maximum-parsimony
145	algorithms (data not shown). Strain NH52F ^T exhibited the highest 16S rRNA gene sequence
146	similarity to L. methylohalidivorans (96.7%) and L. aquimarina (95.8%), followed by P.
147	daeponensis TF-218 ^T (96.0%), P. inhibens T5 ^T (95.9%), P. gallaeciensis BS107 ^T (95.7%), P.
148	arcticus 20188 ^T (95.4%) and <i>M. algicola</i> ATCC 51440 ^T (94.1%). None of other type strains used
149	in the phylogenetic analysis showed similarity higher than 94%. Genotypic (DNA G+C content)

150 and phenotypic properties (Table 1) support the affiliation of strain $NH52F^{T}$ as a member the

151	genera Leisingera including its colony colour, salinity range and a narrow substrate range. In
152	addition, strain NH52F ^T contained phosphatidylcholine (PC) (Table 1), which was distinguish it
153	from the genera Phaeobacter and Marinovum. Moreover, fatty acids $C_{16:0}$ 2-OH and an unknown
154	fatty acid (equivalent chain-length, 11.799) as minor components were present in strain NH52F ^T
155	and other Leisingera species, but absent in Marinovum. Thus, strain NH52F ^T is more close to the
156	member of genus Leisingera other than to those of Phaeobacter and Marinovum. On the other
157	hand, strain $NH52F^{T}$ distinguished itself from the recognized <i>Leisingera</i> species by the level of
158	16S rRNA sequence similarity (<97%, Stackebrandt & Goebel, 1994) and differences in
159	phenotypic properties, including amylase, esterase lipase (C8) and acid phosphatase activity and
160	antibiotic susceptibility (Table 1).
161	Based on the data presented, strain $NH52F^{T}$ is considered to represent a novel species of the
162	genus Leisingera, for which the name Leisingera nanhaiensis sp. nov. is proposed.
163	Description of Leisingera nanhaiensis sp. nov.
164	Leisingera nanhaiensis (nan.hai.en'sis. N. L. adj. referring to Nanhai, the South China Sea, the
165	site where the type strain was isolated).
166	Cells are aerobic, Gram-staining-negative, motile rods, 0.62-0.8×1.6-2.96 μ m in size. Colonies

in colour and 1-1.5 mm in diameter after 5 days incubation at 25°C. Growth occurs at 4-37°C and
pH 6.0-9.3, with optimal temperature at 25 °C and pH 7.0-8.5. NaCl is essential for growth.

on M2 are circular, smooth, glistening, moist-appearing, slightly convex with entire margin, beige

167

170 Growth occurs in the presence of 0.6-6.0 % (w/v) NaCl with optimal salinity from 1 to 4%. 171 Bacteriochlorophyll α (Bchl α) is absent. Cells are positive for oxidase and catalase. Nitrate 172 reduction, hydrolysis of starch, aesculin, Tween 20, 40 and 80, gelatin liquefaction and urease are 173 negative. H₂S and indole are not produced. Voges-Proskauer reaction is negative. Arginine

174	dihydrolase, lysine decarboxylase, ornithine decarboxylase, β -galactosidase, β -glucosidase and
175	tryptophan deaminase are negative. In assays with the API ZYM strips, alkaline phosphatase,
176	esterase (C4), esterase lipase (C8), leucine arylamidase, valine arylamidase, cystine arylamidase,
177	acid phosphatase and naphtol-AS-BI-phosphohydrolase are positive, but lipase (C14), trypsin,
178	α -chymotrypsin, α -galactosidase, β -glucuronidase, α -glucosidase, N-acetyl- β -glucosaminidase,
179	α -mannosidase and α -fucosidase are negative. Growth only occurs on complex substrates, such as
180	yeast extract, tryptone and peptone from potatoes, beside betaine and methionine. No growth was
181	detected on the following single carbon sources: D-glucose, D-fructose, D-galactose, sucrose,
182	trehalose, L-rhamnose, D-sorbitol, cellobiose, acetate, citrate, succinate, D-glucosamine,
183	L-glutamate, serine, leucine and glycerol except a faint growth was observed in the presence of
184	β -hydroxy butyric. In addition, the type strain is susceptible to cefoperazone, ceftriaxone,
185	erythromycin, ampicillin, kanamycin, norfloxacin, carbenicillin, polymyxin B, rifampicin,
186	piperacillin, chloramphenicol and cephradine, but resistant to clindamycin, ciprofloxacin,
187	lincomycin, furazolidone, cephazolin, penicillin G, doxycycline hydrochloride, cephalexin,
188	tetracycline, metronidazole, minocycline, vancomycin, streptomycin, ofloxacin, trimethoprim,
189	oxacillin, gentamicin and neomycin. The predominant fatty acids are (>1% of total fatty acids)
190	$C_{18:1}\omega7c$ (71.9%), followed by an unknown fatty acid (equivalent chain-length of 11.799; 5.7%),
191	$C_{16:0}$ 2-OH (5.4%), $C_{10:0}$ 3-OH (3.9%), $C_{16:0}$ (3.0%), 11-methyl $C_{18:1}\omega7c$ (3.0%) and $C_{12:0}$ 3-OH
192	(2.9%). The major polar lipids are phosphatidylglycerol, phosphatidylethanolamine, an
193	unidentified phospholipid, an unidentified lipid and an aminolipid. The DNA G+C content is 60.5
194	mol% (determined by HPLC). Other phenotypic characteristics are given in Table 1.
195	The type strain, NH52F ^T (=LMG 24841 ^T =CCTCC AB 208316 ^T =MCCC 1A04178 ^T), was

196 isolated from a sandy sediment sample of the South China Sea at a depth of 157 m.

197 Acknowledgements

- 198 This work was financially supported by National Key Technology R&D Program of China (No.
- 199 2006BAB19B02), and National Infrastructure of Natural Resources for Science and Technology
- 200 Program of China (No. 2005DKA21209).
- 201

202 References

- 203 Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. &
- 204 Struhl, K. (editors) (1995). Short protocols in molecular biology: a compendium of methods
- 205 from current protocols in molecular biology, 3rd ed. New York: John Wiley & Sons, Inc.
- 206 Cowan, S. T. & Steel, K. J. (1965). Manual for the Identification of Medical Bacteria. London:
- 207 Cambridge University Press.
- 208 Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions
- through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.
- 210 Komagata, K. & Suzuki, K. (1987). Lipid and cell-wall analysis in bacterial systematics.
- 211 Methods Microbiol 19, 161–207.
- 212 Labrenz, M., Collins, M. D., Lawson, P. A., Tindall, B. J., Schumann, P. & Hirsch, P. (1999).
- 213 Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a
- 214 production from hypersaline Ekho Lake. Int J Syst Bacteriol 49, 137–147.
- 215 Lafay, B., Ruimy, R., de Traubenberg, C. R., Breittmayer, V., Gauthier, M. J. & Christen, R.
- 216 (1995). Roseobacter algicola sp. nov., a new marine bacterium isolated from the phycosphere of
- 217 the toxin-producing dinoflagellate Prorocentrum lima. Int J Syst Bacteriol 45, 290–296.

218	Lane, D. J. (1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial
219	Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
220	Liu, C. & Shao, Z. (2005). Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium
221	isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55, 1181–1186.
222	Martens, T., Heidorn, T., Pukall, R., Simon, M., Tindall, B. J. & Brinkhoff, T. (2006).
223	Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis
224	gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria
225	algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and
226	emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol
227	<i>Microbiol</i> 56 , 1293–1304.
228	Ruiz-Ponte, C., Cilia, V., Lambert, C. & Nicolas, J. L. (1998). Roseobacter gallaeciensis sp.
229	nov., a new marine bacterium isolated from rearings and collectors of the scallop <i>Pecten maximus</i> .

- 230 Int J Syst Bacteriol **48**, 537–542.
- 231 Ryu, E. K., MacCoss, M. (1979). Modification of the Dittmer-Lester reagent for the detection of
- phospholipid derivatives on thin-layer chromatograms. J Lipid Res 20, 561-563.
- 233 Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing
- 234 phylogenetic trees. *Mol Biol Evol* **4**, 406–425.
- 235 Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual,
- 236 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
- 237 Schaefer, J. K., Goodwin, K. D., McDonald, I. R., Murrell, J. C. & Oremland, R. S. (2002).
- 238 Leisingera methylohalidivorans gen. nov., sp. nov., a marine methylotroph that grows on methyl
- bromide. Int J Syst Evol Microbiol 52, 851–859.

- 240 Stackebrandt, E. & Goebel, B. M. (1994). Taxonomic note: a place for DNA-DNA reassociation
- 241 and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst
- 242 Bacteriol 44, 846-849.
- 243 Stackebrandt, E. & Liesack, W. (1993). Nucleic acids and classification. In Handbook of New
- 244 Bacterial Systematics, pp. 158-160. Edited by M. Goodfellow & A. G. O'Donnell. London:
- 245 Academic Press.
- 246 Tamaoka, J. & Komagata, K. (1984). Determination of DNA base composition by reverse-phase
- high-performance liquid chromatography. *FEMS Microbiol Lett* **25**, 125–128.
- 248 Vandecandelaere, I., Segaert, E., Mollica, A., Faimali, M. & Vandamme, P. (2008). Leisingera
- 249 aquimarina sp. nov., isolated from a marine electroactive biofilm, and emended descriptions of
- 250 Leisingera methylohalidivorans Schaefer et al. 2002, Phaeobacter daeponensis Yoon et al. 2007
- and *Phaeobacter inhibens* Martens et al. 2006. Int J Syst Evol Microbiol 58, 2788–2793.
- 252 Vaskovsky, V. E., Kostetsky, E. Y. & Vasendin, I. M. (1975). A universal reagent for
- 253 phospholipid analysis. J Chromatogr 114, 129–141.
- 254 Yoon, J.-H., Kang, S.-J., Lee, S.-Y. & Oh, T.-K. (2007). Phaeobacter daeponensis sp. nov.,
- 255 isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 57, 856–861.
- 256 Zhang, D.-C., Li, H.-R., Xin, Y.-H., Liu, H.-C., Chi, Z.-M., Zhou, P.-J. & Yu, Y. (2008).
- 257 Phaeobacter arcticus sp. nov., a psychrophilic bacterium isolated from the Arctic. Int J Syst Evol
- 258 *Microbiol* 58, 1384-1387.

259 Table 1. Phenotypic characteristics that differentiate strain NH52F^T from recognized species of the genera *Leisingera*, *Phaeobacter* and *Marinovum*

- 260 Taxa: 1, strain NH52F^T; 2, L. methylohalidivorans DSM 14336^T; 3, L. aquimarina LMG 24366^T; 4, Phaeobacter; 5, M. algicola DSM 10251^T. All strains are
- 261 Gram-staining-negative, grow in the presence of Na⁺ and are oxidase- and catalase-positive and unable to degrade Tween 80. For taxa 4, values are characteristics for
- all species in the genus. Data for reference strains from Vandecandelaere *et al.* (2008), Zhang *et al.* (2008), Yoon *et al.* (2007), Martens *et al.* (2006), Schaefer *et al.*
- 263 (2002), Labrenz et al. (1999), Ruiz-Ponte et al. (1998), Lafay et al. (1995). +, positive; -, negative; W, weakly positive; ND, no data available.

Characteristic	1	2	3	<mark>4</mark>	5
Morphology	Rods/ovoid rods	Rods/ovoid rods	Ovoid	Ovoid rods	Rods or ovoid rods
				Brown to dark brown or	
Colony colour	Beige	No pigment	Dark beige-pink	yellowish white	Beige/pinkish
Growth at 4	+	+	+	<mark>-</mark>	-
Growth at 37 🗆	W	-	+	+	+
Temperature (□)*	4-37 (25)	4-36 (27)	4-37 (20)	<mark>4-42 (19-37)</mark>	10-37 (25-30)
Salinity range (%)*	0.6-6 (1-4)	1-6.5 (2-4)	1-7	<mark>0.06-11.7 (1.2-4)</mark>	0.6-11.7
pH*	6-9.3 (7-8.5)	6.5-8.5 (7.7)	5.5-9(6.5-8)	<mark>5-10 (6-9)</mark>	6-9 (7.5)
Bchl α	-	-	ND	_ [†]	-
Nitrate reduction	-	-	-	v	-
Acid from glucose	-	-	-	V	ND
Enzyme activities:					
Amylase	-	+	-		+
Gelatinase	-	-	W	-	+
Caseinase	-	-	-	-	ND
Esterase (C4)	W	-	-	V	ND
Acid phosphatase	+	-	-	V	ND
Naphthol-AS-BI-phosphohydrolase	+	W	W	_*	ND

Utilization of:					
Betaine	+	+	+	v	ND
Methionine	+	+	-	+ [†]	ND
L-Arabinose	-	-	-	v	+
D-Glucose	-	-	-	+	+
Maltose	-	-	-	V	+
D-Mannose	-	-	-	V	-
Citrate	-	-	-	V	+
Susceptibility to:					
Neomycin	-	W	<mark>ND</mark>	+ [†]	-
Streptomycin	-	+	+	+ [†]	-
Vancomycin	-	-	-	V	ND
Polar lipids#	PG,PE,PL,L,AL	PG,PE,PL,L,AL	ND	PC,PG,PE,L,AL,PL	PC,PG,PE,L,AL,PL
DNA G+C content (mol%)	60.5	60.5	61.4	<mark>55.7-64.9</mark>	60

264 *Ranges with optima shown in parentheses.

265 [†] No data available for the type strain of *Phaeobacter arcticus*

²⁶⁶ [‡] No data available for the type strain of *Phaeobacter gallaeciensis*.

267 #PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PL, unidentified phospholipid. AL, aminolipid; L, unidentified lipid;

268 Supplementary Table S1. Cellular fatty acid composition (%) of strain NH52F^T with 269 recognized species of the genera *Leisingera*, *Phaeobacter* and *Marinovum*

270 Taxa: 1, strain NH52F^T; 2, *L. methylohalidivorans* DSM 14336^T; 3, *L. aquimarina* LMG 24366^T;

4, *M. algicola* DSM 10251^T; 5, *P. gallaeciensis* BS107^T; 6, *P. inhibens* T5^T; 7, *P. daeponensis*

272 TF-218^T; 8, *P. arcticus* 20188^T. Values are percentage of total fatty acids. Data for reference

strains from Yoon *et al.* (2007), Vandecandelaere *et al.* (2008), Zhang *et al.* (2008).

Fatty acid	1	2	3	4	5	6	7	8
Straight-chain fatty acids								
C _{12:0}		0.6			0.4	0.4	1.2	0.86
C _{15:0}								1.04
C _{16:0}	3.0	3.2	3.5	2.5	6.3	5.2	8.6	9.69
C _{17:0}		0.1		0.3	0.2	0.2	0.6	
C _{18:0}	0.6	0.5		2.5	1.3	2	2.4	0.53
Branch-chain fatty acids								
C _{14:1} iso E			11.6					
Unsaturated fatty acids								
$C_{17:1}\omega 8c$	0.4	0.2		0.8				
$C_{18:1}\omega7c$	71.9	77.5	71.6	81	74.5	70.8	57.7	44.63
Hydroxy fatty acids								
C _{10:0} 3-OH	3.9	1.8	2.0	1.1	1.9	1.8	1.7	6.75
C _{12:0} 3-OH	2.9	2.1	2.1	1.2	1.6	2	2.6	
C _{16:0} 2-OH	5.4	4.7	4.2		2.7	2.8	5.6	3.95
C _{18:1} 2-OH	0.7	0.6						0.59
11-Methyl C _{18:1} ω 7 c	3.0	4.7		9.6	7.8	11.8	16.6	18.1
Summed feature 3*	0.6	0.5		0.2	0.3	0.2	0.5	2.3
Unknown fatty acid (equivalent	5.7	3.1	2.7		2.6	2.7	2.3	10.88
chain-length, 11.799)								

274 *summed feature 3 represented two or three fatty acids that could not be separated by the MIDI system: $C_{16:1}\omega 7c$

 $275 \qquad \text{and/or iso-} C_{15:0} \text{ 2-OH}$

277 Legends to Figures:

Fig. 1. Cell morphology of strain $NH52F^{T}$ grown on M2 agar plate for 24h at 25 \Box : (a) phase contrast micrograph, Bar, 10 µm; (b), transmission electron micrographs of negatively stained cells, Bar, 1 µm.

281

Fig. 2. Neighbour-joining tree based on 16S rRNA gene sequences showing the phylogenetic relationship between strain NH52F^T and related taxa. Only bootstrap values above 50% (derived from 1000 replicates) are shown at the branching points. GenBank accession numbers of 16S rRNA gene sequences are shown in parentheses. Bar, 0.05 substitutions per nucleotide position.

288 Fig. 1

Fig. 1. Cell morphology of strain $NH52F^{T}$ grown on M2 agar plate for 24h at 25 \Box : (a) phase contrast micrograph, Bar, 10 μ m; (b), transmission electron micrographs of negatively stained

292 cells, Bar, 1 μm.

293

295

Fig. 2. Neighbour-joining tree based on 16S rRNA gene sequences showing the phylogenetic relationship between strain NH52F^T and related taxa. Only bootstrap values above 50% (derived from 1000 replicates) are shown at the branching points. GenBank accession numbers of 16S rRNA gene sequences are shown in parentheses. Bar, 0.05 substitutions per nucleotide position.

301

302