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Quorum sensing (QS) is a widespread intercellular form of communication to coordinate

physiological processes and cooperative activities of bacteria at the population level, and

it depends on the production, secretion, and detection of small diffusible autoinducers,

such as acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and

autoinducer 2. In this review, the function of QS autoinducers of gram-negative

bacteria in different aspects of wastewater treatment systems is examined. Based

on research primarily performed over the past 10 years, QS involvement in the

formation of biofilm and aerobic granules and changes of the microbial community

and degradation/transformation pathways is discussed. In particular, the QS pathway

in the role of bacterial infections and disease prevention in aquaculture is addressed.

Interference of QS autoinducer-regulated pathways is considered potential treatment

for a variety of environmentally related problems. This review is expected to serve as a

stepping stone for further study and development strategies based on the mediation of

QS-regulated pathways to enhance applications in both wastewater treatment systems

and aquaculture.

Keywords: quorum sensing, autoinducer, QS regulation, wastewater treatment system, aquaculture

INTRODUCTION

Cell-cell communication is ubiquitously used in microbes and microbial communities to monitor
and adapt to their external environment via contact-based chemical exchanges (Lobedanz and
Søgaard-Andersen, 2003; Phelan et al., 2012), chemical signaling (Eberhard et al., 1981; Hussain
et al., 2008; Schaefer et al., 2008; Galloway et al., 2011) and electric signaling (Nielsen et al.,
2010; Shrestha et al., 2013). In one such system, quorum sensing (QS), bacteria can “count” their
local population numbers using autoinducers, which are small chemical molecules. QS was first
discovered in the marine bacterium Vibrio fischeri (Nealson et al., 1970) and later was coined
by Fuqua et al. (1994), referring to the acylated homoserine lactone (AHL)-mediated luxR/luxI
regulated system.

In QS bacteria, when the concentration of autoinducer accumulates to a certain threshold,
autoinducers bind to transcriptional regulators to alter gene expression profiles (Miller and
Bassler, 2001; Di Cagno et al., 2011; Schaefer et al., 2013) or bind to extracellular domains of
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specific membrane histidine kinase receptors followed by
autophosphorylation and a cognate cytoplasmic response
regulator (Sturme et al., 2002; Taga et al., 2003; Neiditch et al.,
2006; Thoendel et al., 2011; Ke et al., 2015). Autoinducers regulate
the expression of QS-dependent genes on a population-wide
scale, endowing bacteria with the ability to live in a “society” that
controls many important physiological processes and to initiate
“co-operative” behaviors, such as biofilm development (Sakuragi
and Kolter, 2007; Shepherd and Lindow, 2009; Liu et al., 2011;
Anbazhagan et al., 2012; Ren et al., 2013), pathogenesis (Smith
et al., 2007; Natrah et al., 2012; Decker et al., 2013; Pande
et al., 2013), and pollutant biodegradation (Toyofuku et al.,
2007; Yong and Zhong, 2010, 2013b; Wang et al., 2013a,b;
Yong et al., 2015; Figure 1). These activities are unlikely to be
completed when only one individual bacterium undertakes the
task; therefore, QS has a significant impact on the environment
(Jayaraman and Wood, 2008; Galloway et al., 2012), healthcare
(Biradar and Devi, 2011; Jamuna Bai and Ravishankar Rai, 2011;
Galloway et al., 2012; Yong and Zhong, 2013a) and agriculture
(Kalia, 2013). Recently, a number of excellent reviews have
highlighted the roles of QS systems, particularly the disruption
of QS systems, in water treatment systems (Nguyen et al., 2012;
Feng et al., 2013; Lade et al., 2014; Siddiqui et al., 2015; Yong
et al., 2015), biodegradation (Díaz et al., 2013; Yong et al., 2015),
and pathogenesis control (Bhardwaj et al., 2013; LaSarre and
Federle, 2013) as well as in the development of novel disease
diagnosis strategies and antimicrobial agents (Roy et al., 2011;
Nafee et al., 2014; Rampioni et al., 2014). In this review, a
selection of recent case studies demonstrating progress in the
development of autoinducer-mediated QS systems used by gram-
negative bacteria is summarized, and a systematic review of the
manipulation of autoinducer-mediated QS systems in wastewater
treatment systems and aquaculture is presented.

BASICS OF QS SIGNALING MOLECULES

Three types of signaling molecules are generally produced
and secreted by QS bacteria (Di Cagno et al., 2011). Acyl-
homoserine lactones (AHLs, Figure 2A) are the best known
class of autoinducers and are frequently used by gram-negative
bacteria (Galloway et al., 2011), whereas autoinducing peptides
(AIPs, Figure 2B) are the major autoinducers produced by
gram-positive bacteria (Sturme et al., 2002; Thoendel et al.,
2011). One non-species-specific autoinducer used as “universal
language,” autoinducer 2 (AI-2) (Figure 2C), is used for intra-
and inter-species communication regardless of whether they are
gram-negative or gram-positive bacteria (Lowery et al., 2008).
Moreover, autoinducer 3 (AI-3) produced by intestinal bacterial
species, such as enterohemorrhagic Escherichia coli (EHEC)
O157:H7, is involved in pathogen-host interactions (Sperandio
et al., 2003; Walters et al., 2006). In addition to these common
QS signaling molecules, communication by CAI-1, namely (S)-
3-hydroxytridecan-4-one (Figure 2D), is used by V. cholera
(Higgins et al., 2007). Relatively simple fatty acid derivatives
called diffusible signal factors (DSFs) are used by Burkholderia
cepacia and Helicobacter pylori, respectively (Deng et al., 2010;
Tanaka et al., 2011). Diffusible extracellular factor (DF) is used

by Xanthomonas campestris (He et al., 2011). Pseudomonas
quinolone signaling (PQS) is identified in P. aeruginosa (Bala
et al., 2013, 2014). Dialkylresorcinol is used by Photorhabdus
asymbiotica (Brameyer et al., 2015).

AHLs are the most common class of autoinducers and are
present in approximately 10% of proteobacteria isolated from
various ecological niches (Tan et al., 2015). AHL signaling
molecules possess a homoserine lactone (HSL) moiety, acyl side
chains with 4–18 carbons that determine the structure diversity
and a substitution primarily belonging to three types: (a) simple
acyl, (b) 3-hydroxyacyl, and (c) 3-oxoacyl groups (Marketon
et al., 2002; Schaefer et al., 2008; Thiel et al., 2009; Galloway et al.,
2011; Savka et al., 2011). The biological activity of thesemolecules
depends on the stereochemistry (Geske et al., 2008; Galloway
et al., 2011). In the LuxI/R system, LuxI proteins are responsible
for the synthesis of AHLs, and LuxR proteins combine with
AHLs to control target gene expression. This system is the
most prevalent QS regulatory system in gram-negative bacteria
(Miller and Bassler, 2001). However, LuxR orphans or solos, i.e.,
LuxR homologs without the cognate autoinducer synthase LuxI,
were also reported, such as SdiA in Salmonella enterica and E.
coli (Ahmer et al., 1998; Kanamaru et al., 2000), QscR in P.
aeruginosa (Fuqua, 2006) and PluR in Photorhabdus luminescens
(Brameyer et al., 2015). These LuxR orphans contain an AHL-
binding domain at the N-terminus to bind to endogenous AHLs
(Lequette et al., 2006), exogenous AHLs (Yao et al., 2006) or other
novel signals (Brameyer et al., 2015) as well as a DNA-binding
helix-turn-helix (HTH) domain at the C-terminus.

AI-2, which represents a universal “language” to facilitate
interspecies communication, is a byproduct of the detoxification
of S-adenosylmethionine (SAM), which is catalyzed by S-
ribosylhomocysteine lyase (LuxS, EC 4.4.1.21) (Xavier and
Bassler, 2005a; Lowery et al., 2008). Studies of the recognition
and signal transduction of AI-2 have focused primarily on the
LuxP-based system of V. harveyi (Neiditch et al., 2005; Defoirdt
et al., 2008) and LasB-based systems of E. coli (Xavier and
Bassler, 2005b) and Salmonella sp. (Taga et al., 2003; Zhu et al.,
2008). Different bacteria responded to AI-2 in different manners,
because differentiation of AI-2 related signaling primarily
occurred at the level of transduction. However, recent studies
demonstrated that the AI-2 of Campylobacter jejuni strain NCTC
11168e (Holmes et al., 2009) and LuxS in Vibrio ichthyoenteri
(Li et al., 2010) may not be involved in cell-cell communication
or the autoinducer-regulated phenotypes of cell growth, biofilm
formation, or virulence gene expression.

Because prokaryotes and eukaryotes have coexisted and
coevolved for millions of years, the existence of interkingdom
communication inevitably evolved (Shiner et al., 2005;
Lowery et al., 2008; González and Venturi, 2013). The
“languages” of AHLs (Joint et al., 2002; Bortolotti et al.,
2015), epinephrine/norepinephrine (Sperandio et al., 2003)
and AI-3 systems (Clarke et al., 2006) are used as signaling
molecules in interkingdom communication. The first example
of QS signaling molecules modulating the host cells was
N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-
HSL) secreted by P. aeruginosa (Telford et al., 1998). The
immunomodulatory activity of 3-oxo-C12-HSL was further
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FIGURE 1 | The various phenotypes regulated by autoinducer-induced QS systems.

shown to inhibit T-cell differentiation and cytokine production
by a mechanism involving an early step in T-cell activation
(Ritchie et al., 2005), but this signaling molecule induced the
expression of HLA-G, the non-classical class I human leukocyte
antigen (HLA), in monocytes and T-cells (Bortolotti et al.,
2015). The eukaryotic response to QS is also interesting, and the
representative example is the interference of bacterial QS with
furanone produced by the red alga Delisea pulchra (Givskov
et al., 1996). Since then, the signaling interfering activity of
brominated furanones has been extensively explored.

INHIBITION AND ACTIVATION OF QS
SYSTEMS IN GRAM-NEGATIVE BACTERIA

Inhibition of QS Systems
Currently, interference with the QS systems is primarily
achieved by inhibiting the synthesis of autoinducers, degrading
autoinducers, interfering with autoinducer receptors, or
inhibiting the autoinducer/receptor complex formation
(Figure 3; Lade et al., 2014). The molecules responsible
for inhibition of autoinducer-induced QS systems or the
autoinducer-regulated phenotype are called quorum-sensing

inhibitors (QSIs). QSIs include furanones and their related
structural analogs (Figure 2E; Zang et al., 2009; Liu et al.,
2010; Steenackers et al., 2010), bismuth porphyrin complexes
(Galkin et al., 2015), glycosylation reagents of glycosylated
flavonoids (Figure 2F; Brango-Vanegas et al., 2015), and
glycomonoterpenols (Mukherji and Prabhune, 2015), heavy
metals (Vega et al., 2014) and nanomaterials (Wagh Nee Jagtap
et al., 2013; Miller et al., 2015; Singh et al., 2015). The inhibitory
effect of furanones is primarily due to their structural similarity
to AHLs, but some case studies also showed that furanones may
function through degrading the LuxR-type protein (Manefield
et al., 2002) or decreasing the DNA-binding activity of the
transcriptional regulator protein LuxR (Defoirdt et al., 2007b).
In addition to AHL autoinducers, furanones also disrupt
the AI-2 biosynthetic pathway by covalently modifying and
inactivating LuxS (Zang et al., 2009). In addition to furanones,
allyl benzo[b]thiophene-3-carboxylate 1,1-dioxide (Figure 2G)
targeted LuxPQ (Zhu et al., 2012), thiazolidinediones and
dioxazaborocane targeted LuxR in V. harveyi (Brackman et al.,
2013) were also reported to be AI-2 inhibitors. Alkylamine-
modified cyclodextrins (Morohoshi et al., 2013) and homoserine
lactone (HSL) aptamer (Figure 2H; Zhao et al., 2013) inhibited
the QS system through the formation of spatial conformations,
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FIGURE 2 | Chemical structuresofspecificQSsignalingmolecules,QSIsandagonisticanalogsofQSsignalingmolecules. (A)Basic structureof theAHL

signalingmoleculewhereR1=H,OH,orOandR2=C1–C18; (B)AIP-1; (C)AI-2; (D)CAI-1C13-AHK; (E) (5Z)-4-bromo-5-(bromomethykene)-3-butyl-2(5H)-furanone; (F)

rutin; (G)allyl benzo[b]thiophene-3-carboxylate1,1-dioxide; (H)homoserine lactone (HSL) aptamer; (I)N-(3-nitro-phenylacetanoyl)-L-homoserine lactone; (J)

N-(3-oxo-acyl)-homocysteine thiolactones; (K)N-(3-oxo-acyl)-trans-2-aminocyclohexanols; (L)naphthyl-DPD; (M) (4S,5R)- -dihydroxyhexanediones; (N)

(Z)-4-((5-(bromomethylene)-2-oxo-2,5-dihydrothiophen-3-yl)-4-oxobutanoicacid); (O)cinnamaldehyde; (P)coumarin.
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FIGURE 3 | Schematic diagrams of biofilm formation and the interruption of QS systems.

whereas silicon dioxide nanoparticles functionalized with β-
cyclodextrin reduced the luminous output of V. fischeri through
binding of AHLs to the nanoparticles and removal of the AHLs
from the immediate bacterial environment (Miller et al., 2015).
Recently, ureidothiophene-2-carboxylic acids were described as
inhibitors of the PQS-QS enzyme PqsD in P. aeruginosa (Sahner
et al., 2015).

In addition to small molecule QSIs, enzymatic degradation is
an alternative approach to inhibit bacterial signaling molecules.
AHL-lactonases and decarboxylases hydrolyze lactone rings,
whereas AHL-acylases and deaminases cleave the acyl side chain
(Figure 4; Amara et al., 2011). Acylases that hydrolyze the
amide moieties of AHLs have been identified in Streptomyces
sp. (Park et al., 2005), P. aeruginosa (Sio et al., 2006),
Comamonas (Uroz et al., 2007), Pseudomonas syringae (Shepherd
and Lindow, 2009), Streptomyces sp. (Ueda et al., 2010),
Bacillus cereus (Sunder et al., 2012), and Kluyvera citrophila
(Mukherji et al., 2014). Metallo-beta-lactamases hydrolyze the
core lactone ring of AHL signaling molecules and are noted
in Acinetobacter sp. (Kang et al., 2004), Rhodococcus sp. (Park
et al., 2006; Uroz et al., 2008), Agrobacterium tumefaciens (Liu
et al., 2007) and Chryseobacterium sp. (Wang et al., 2012).
Oxidoreductases from Rhodococcus erythropolis (Uroz et al.,
2005) and Bacillus megaterium (Chowdhary et al., 2007) target
the keto group of 3-oxo-HSLs or the acyl side chain itself.
Immobilized enzymes on solid materials, such as magnetic
enzyme carriers (MECs) (Yeon et al., 2009b; Lee et al., 2014),
nanofiltration (NF) (Kim et al., 2011), microporous hollow
fiber membranes (Jahangir et al., 2012; Oh et al., 2012), and
encapsulation of QQ bacteria Rhodococcus sp. (Oh et al., 2012;
Kim et al., 2013), have been used to inhibit QS signaling
systems.

Activation of QS Systems
Compared with the well-studied QSIs, research on activation
of QS is in its infancy. Agonistic analogs of QS signaling
molecules were believed to trigger the activation of the host
defense system and thus allow resistance to develop via activation
of virulence factors at low population densities (Defoirdt
et al., 2004). N-(3-nitro-phenylacetanoyl)-L-homoserine lactone
(Figure 2I) was one of the first reported super-agonists of AHLs
to trigger bioluminescence in V. fischeri, increasing activity
relative to native AHLs (Geske et al., 2007a,b). In the non-AHL-
producing Salmonella enterica serovar Typhimurium, the LuxR
homolog SdiA was activated by N-(3-oxo-acyl)-homocysteine
thiolactones (3O-AHTLs, Figure 2J) and N-(3-oxo-acyl)-trans-
2-aminocyclohexanols (Figure 2K) at concentrations lower than
those of most active AHLs (Janssens et al., 2007). Naphthyl-
DPD (Figure 2L), the agonistic analog of AI-2 precursor DPD,
is an efficient synergistic agonist in V. harveyi even at low
nanomolar concentrations. The synergistic effect is based on
binding of one DPD unit to one LuxPQ domain and binding
of naphthyl-DPD to the second LuxPQ domain, allowing a
favorable conformational change that leads to early induction
of QS activity (Mandabi et al., 2015). Chemicals such as
(4S,5R)-dihydroxyhexanediones (DHDs, Figure 2M) is not only
a synergistic agonist for the LsrB receptor in E. coli but also an
agonist in V. harveyi with a LuxP receptor, displaying an EC50 =

0.65µM. This activity is the strongest agonistic activity reported
thus far in V. harveyi (Rui et al., 2012).

Regulation of QS Systems by Sub-lethal
Antibiotics
Interestingly, sub-lethal antibiotics also function as QS system
mediators. Azithromycin, ceftazidime, and ciprofloxacin (CPR)
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FIGURE 4 | Modes of AHL-degrading enzymes and their catalytic sites. Revised from Chen et al. (2013).

reduce the production of the AHLs, most likely due to the
changes in membrane permeability in the presence of antibiotics
that decreased flux of AHLs and expression of QS-regulated
genes (Skindersoe et al., 2008). Similarly, streptomycin at sub-
lethal concentrations reduced 3-OH-C12-HSL levels through
the down-regulation of abaI and A1S_0112 from Acinetobacter
baumannii (Niu et al., 2008; Clemmer et al., 2011; Saroj
and Rather, 2013). Aspirin at sub-lethal concentrations is an
efficient inhibitor of QS, virulence, and toxins in P. aeruginosa
via the interaction between the aspirin aryl group and Tyr-
88 of the LasR receptor by strong π–π stacking interactions
(El-Mowafy et al., 2014). However, some antibiotics, such as
CPR, metronidazole, and tinidazole, exhibited a dose-dependent
augmentation in response to QS systems, exhibiting an AHL-like
effect. Alternatively, at the concentrations tested, these antibiotics
may themselves act as QS signalingmolecules (Struss et al., 2012).
The contradictory effect of CPR on QS systems may be due to the
different reporter cells used, e.g., P. aeruginosa PAO1 (Skindersoe
et al., 2008) and E. coli expressing P. aeruginosa QS systems
(Struss et al., 2012).

QUORUM SENSING AND
ENVIRONMENTALLY RELATED
PROCESSES

Quorum Sensing and Wastewater
Treatment Systems
In wastewater treatment systems, one critical step involves
removal of organic pollutants by biological treatments based on
the microbial decomposition of pollutants into small molecules

with less or even no toxicity, which simultaneously generates
energy for microbial metabolism and the building blocks for cell
synthesis. This method is now considered an essential step in
wastewater treatment system and has been classified into two
primary groups: fixed-film systems and activated sludge systems
(Feng et al., 2013). QS systems are involved in the following
aspects of these processes.

Involvement in Biofilm Formation
Biofilms consist of bacterial cells surrounded by an extracellular
matrix consisting of secreted proteins, polysaccharides, nucleic
acids, and dead cells; biofilm development progresses through the
stages of initial attachment, irreversible attachment, maturation
I, and maturation II (Figure 3; Parsek and Greenberg, 2005).
AHLs freely diffuse in the microenvironment and are involved
in biofilm formation in P. aeruginosa (Davies et al., 1998),
Pantoea stewartii (Koutsoudis et al., 2006), Acinetobacter sp.
(Kang and Park, 2010), and Serratia plymuthica (Liu et al., 2011).
In P. aeruginosa, the las QS system regulates biofilm formation
through control of the pel operon that encodes the glucose-
rich matrix exopolysaccharide, a component of the biofilm
matrix (Davies et al., 1998; Sakuragi and Kolter, 2007). However,
exogenous 3-oxo-octanoyl-L-homoserine lactone (C8-oxo-HSL)
increased the growth rate of P. aeruginosa cells on an ultra-
filtration membrane biofilm without influencing the production
of extracellular polymeric substances (EPS, Xia et al., 2012). The
correlation between QS and EPS production in a growing biofilm
under various conditions was modeled, illustrating the benefits
of QS regulation by developing a thick, protective layer of EPS or
by clogging the environment with biomass to secure a nutrient
supply and outcompete other colonies (Frederick et al., 2011).
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In the natural environment, biofilm formation by
microorganisms can be beneficial or detrimental from the human
perspective. Biofilms formed by degrading microorganisms are
generally used to remove hydrocarbons, heavy metals, and
nutrients to improve the mineralization process, as they offer
a sessile, protective environment with optimal pH, solute
concentrations and redox potential (Singh et al., 2006). Aerobic
granules cultivated in sequencing batch reactors (SBRs) for
biological wastewater treatment are considered a special
type of biofilm and share many features of biofilm systems
(Liu and Tay, 2002; Yang et al., 2004). Aerobic granules
possess the merits of high stability and flexibility, low energy
requirements, reduced footprint, aerobic, and anoxic zones
inside the granules, and reduced investment and operational
costs in practical applications compared with conventional
activated sludge (Aqeel et al., 2015; Long et al., 2015; Pronk
et al., 2015; Wagner et al., 2015). In aerobic granules, a gradient
microbial population of aerobic bacteria, anaerobic bacteria,
and dead microbial cells under the granule surface co-exists
due to the presence of oxygen and nutrient gradients (Figure 5;
Liu et al., 2002). AHLs produced by some of these bacteria,
e.g., Aeromonas sp., Pseudomonas sp. and Acinetobacter sp.,
were detected (Valle et al., 2004; Morgan-Sagastume et al.,
2005; Chong et al., 2012; Yong and Zhong, 2013b). Both
the autoinducers of AHL and AI-2 were observed in the
biomass during the period of aerobic granulation, and this
phenomenon was frequently ATP-dependent (Xiong and Liu,
2010; Zhang et al., 2011; Jiang and Liu, 2013; Wang et al.,
2014). AHLs at picomolar to nanomolar concentrations are
strongly and mostly positively correlated with the initiation
of granulation, formation of highly structured granules,
and maintenance of granular structure in the granulation
ecosystem.

Mature granules or their extracts induced the bacterial
attached-growth state with a high adhesion capability,
contributing to the initial cell attachment and subsequent
biofilm growth on a Flow-Cell cover slide, thus accelerating
the formation of aerobic granules from conventional activated
sludge (Ren et al., 2010, 2013). This effect may be attributed
to the increased activity of AHL signaling molecules contained
in the mature granules or their extracts (Li et al., 2014). The
correlation between QS signaling molecules and the production
of EPS, a significant factor promoting the maintenance of aerobic
granular structures during the development of aerobic granules
and biofilm growth, was confirmed (Jiang and Liu, 2012; Li et al.,
2014; Tan et al., 2014). AHLs also regulated the production of
extracellular biosurfactants (or act as biosurfactants) (Daniels
et al., 2006) and extracellular proteins (Lv et al., 2014a). The
involvement of QS in the formation of aerobic granules was also
confirmed using quorum quenching (QQ). A high rate of QQ
activity was presented in the floccular sludge. However, when
the floccular biomass was transformed into granular sludge, the
QQ activity of the community was reduced by 30%, whereas
the levels of C4–C8 AHLs associated with the initiation of
granulation increased up to 10- to 100-fold. However, when the
granule disintegrates, C6-HSL, and C8-HSL levels decreased
with the reduced sludge particle size (Tan et al., 2014, 2015).

Biofouling is an adverse effect of the biofilm that forms by
the attachment of microorganisms on the surface of various
solid matrixes. This condition is the primary hindrance during
the development and application of membrane bioreactors
(MBR) and consumes 60% of MBR operating fees (Drews,
2010). AHL autoinducers from C4-HSL to C14-HSL (Kim
et al., 2009, 2013; Yeon et al., 2009a; Cuadrado-Silva et al.,
2013) as well as AI-2 (Davies et al., 1998; Xu and Liu,
2010) have frequently been detected during biofouling in

FIGURE 5 | Schematic diagrams of aerobic granulation, attached bacteria, and function of QS signaling molecules.
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the MBR environment. Furthermore, a positive correlation
between AHLs and membrane biofouling was confirmed
because the strong AHL activity corresponded to an abrupt
increase in the transmembrane pressure (TMP) in a fouled
MBR (Yeon et al., 2009a). The presence of autoinducers in
the biofilm and the relationship between autoinducers and
biofilm formation phenotype, TMP and EPS measurements
suggest alternative strategies for controlling membrane
biofouling via interference of the autoinducer-mediated QS
systems. In fact, the activation and inhibition of QS systems
are two antagonistic coexisting processes among various
bacterial communities in different wastewater treatment
systems (Song et al., 2014). Chemicals, such as 5-hydroxy-
3[(1R)-1-hydroxypropyl]-4-methylfuran-2(5H)-one, (5R)-3,4-
dihydroxy-5-[(1S)-1,2-dihydroxyethyl]furan-2(5H)-one, kojic
acid (Dobretsov et al., 2007, 2011), and non-halogenated
2(5H)-furanone (Ponnusamy et al., 2010), are QSIs that control
the formation of biofilms. Given the toxicity of furanones,
non-toxic agents were preferred alternative strategies to control
biofouling, which may mitigate membrane biofouling without
disturbing bacterial growth. Vanillin was reported to reduce
the production of AHL autoinducers and decrease the biofilm
formation of Aeromonas hydrophila on a membrane at very
low concentrations (Ponnusamy et al., 2009, 2013). Further
application of vanillin to a reverse osmosis membrane in a
CDC reactor exhibited 97% biofilm reduction (Kappachery
et al., 2010). D-tyrosine significantly reduced the microbial
attachment on a solid matrix through its inhibitory effect on
the synthesis of AI-2, eDNA and extracellular polysaccharides
and proteins (Xu and Liu, 2011). In addition to small chemicals,
acylases are also used to reduce the biofouling from fouled
reverse osmosis membranes (Paul et al., 2009; Yeon et al.,
2009a; Kim et al., 2012). To overcome the limitations of a short
half-life and low efficiency using free enzymes, immobilized
acylase bound to magnetic particles was used to inactivate the
AHL autoinducers to reduce biofilm formation and enhance
membrane permeability (Yeon et al., 2009b). Alternatively, more
feasible and economic methods based on the encapsulation
of Rhodococcus sp. BH4 and recombinant E. coli-producing
AHL-lactonase in microporous membranes were developed. The
biofilm formed on the membrane in the microbial vessel reactor
was approximately half of the total attached biomass and thinner
and sparser compared with that in the control reactor (Oh et al.,
2012). Lactonase from Rhodococcus sp. BH4 is responsible for
the degradation of a wide range of AHLs and thus inhibition
of biofouling (Oh et al., 2013). To overcome the limitation
of transference of mass and AHLs from the mixed liquor
to the microbial vessel encapsulated Rhodococcus sp. BH4, cell
entrapping beads (CEB), i.e., moving beads of alginate containing
Rhodococcus sp. BH4, were developed with a better capacity to
mitigate biofouling. In MBRs, the time to achieve a TMP of 70
kPa in the presence of CEBs was 10-fold longer than that in
the absence of CEBs (Kim et al., 2013). Another macrocapsule
consisting of the membrane coating layer and alginate core with
Rhodococcus sp. BH4 was developed, and it decreased to half
the total amount of biocakes (Kim et al., 2015). Pseudomonas
sp. 1A1 probably producing AHL-acylase to degrade AHLs

were also encapsulated in the ceramic microbial vessel, leading
to significantly reduced polysaccharides and proteins (Cheong
et al., 2013, 2014). However, although disruption of QS systems
has been employed to mitigate biofouling, the above findings
have yet to be used in practice.

Optimization of the Composition of the
Bacterial Community
It is generally accepted that removal of different pollutants
by microorganisms is dominated by the percentage of and
interaction between different microbes. In activated sludge
communities from industrial wastewater treatment systems,
a dominant functional member of the Thauera genus was
transiently supplanted by a member of the Comamonas genus in
response to the exogenous AHL. In addition, phenol degradation
rates were restored to the original higher levels (Valle et al., 2004).
In another long-term operated bioreactor, greater than 50% of
the top 50 most abundant community members exhibited a
strong positive correlation with at least one AHL and granulation
(Tan et al., 2014). Xanthomonadaceae (Tan et al., 2014) and
Flavobacterium (Lv et al., 2014b) in aerobic granules correlated
with increased AHLs content. In contrast, an AHL signal
degrader from the Comamonadaceae family exhibited a negative
correlation with both the AHL concentration and granulation
(Tan et al., 2014).

Strengthen the
Biodegradation/Biotransformation
Pathways in Gram-Negative Bacteria
QS bacteria can degrade or transform phenol (Valle et al.,
2004; Yong and Zhong, 2010), hexadecane (Kang and Park,
2010), phenanthrene, or pyrene (Huang et al., 2013), nitrogen
(Toyofuku et al., 2007, 2008; De Clippeleir et al., 2011)
and total organic carbon (Zhang et al., 2015). The first
evidence demonstrating AHL involvement in biodegradation was
observed in phenol degradation by activated sludge. The addition
of 2µM AHLs could maintain the phenol biodegradation
ability for a longer period. However, this work did not present
any evidence for the QS effect on bacterial biodegradation or
pollutant metabolism (Valle et al., 2004). A more detailed study
examined the RhlI/R QS system in a P. aeruginosa organic
pollutant degrader from industrial andmunicipal wastewater and
its involvement in biodegradation and denitrification. Mutants
of △rhlI and △rhlR exhibited increased denitrification activity
(Toyofuku et al., 2007) and reduced phenol degradation (Yong
and Zhong, 2010, 2013b), and the exogenous addition of the
cognate AHL molecules or AHL extracts induced the QS mutant
strains to exhibit denitrification activity similar to the wild-type
strain. The repression of mutant !rhlI but not mutant !rhlIR
could also be relieved by supplementation with AHL extracts
or synthetic C4-HSL. These data supplied concrete evidence to
demonstrate the involvement of the QS system in biodegradation
(Yong and Zhong, 2010, 2013b). abaI encodes the autoinducer
synthases of the LuxI family in another important aromatic
compound degrader, Acinetobacter sp. (Smith et al., 2007; Niu
et al., 2008; Anbazhagan et al., 2012), which is also involved in
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biofilm formation and hexadecane biodegradation. Its activity is
enhanced by adding exogenous 3-OH-C12-HSL (Kang and Park,
2010). However, in another case study in activated sludge, short
chain AHLswere responsible for nicotine degradation and had an
increased effect on Acinetobacter sp. TW colonization, whereas
long chain AHLs are secreted and contribute to resistance to the
toxin nicotine (Montgomery et al., 2013; Wang et al., 2013a,b).

The expression and activity of enzymes involved in
biodegradation are regulated by autoinducers and QS systems.
During the degradation of anthranilate and phenol by P.
aeruginosa, expression of catechol-1,2-dioxygenase (C12O) and
catechol 2,3-dioxygenase (C23O) was significantly enhanced
by the addition of N-decanoyl-L-homoserine lactone (C10-
HSL), N-octanoyl-L-homoserine lactone (C8-HSL) or C4-HSL
(Chugani and Greenberg, 2010) through the rhlI/R QS system
(Yong and Zhong, 2013b), respectively. In denitrification, the
rhlI/R QS system repressed the promoter activities of nark1,
nirS, norC, and nosR and thus the corresponding activities of
NO−

3 reductase, NO−

2 reductase, and NO reductase were higher
in the mutant of △rhlR (Toyofuku et al., 2007). Moreover, the
reduction of NO reductase and NO−

3 reductase and induction of
NO−

2 reductase at the post-transcriptional level are also regulated
by the PQS-based QS system in P. aeruginosa (Toyofuku et al.,
2008).

Quorum Sensing and Aquaculture
QS systems were extensively confirmed to be involved in
regulation of virulence of pathogens in aquaculture. Virulence
factors of the opportunistic pathogen V. harveyi, including
extracellular toxin (Manefield et al., 2000), siderophore
(Lilley and Bassler, 2000), metalloprotease (Mok et al.,
2003), type III secretion system (Henke and Bassler, 2004),
phospholipase, caseinase, and gelatinase (Natrah et al., 2011b),
are regulated by QS systems. In a number of other Vibrio
species, such as V. cholerae, V. vulnificus, V. anguillarum, V.
splendidus, V. aestuarianus, and V. vulnificus, the expression of
metalloproteases is also modulated by QS (Decker et al., 2013;
Ha et al., 2014). More direct evidence revealed that attenuation
of QS in pathogenic Aeromonas spp. and V. campbellii resulted
in significantly reduced mortality toward their respective hosts
burbot (Natrah et al., 2012), larvae of brine shrimp and giant
freshwater prawn (Pande et al., 2013).

Due to the close association between the QS system and
virulence of aquatic pathogens, ecological strategies are the
preferred option to overcome the problems of acquisition
of antibiotic resistance and the spread of resistant genes
when antibiotics or disinfectants are used to treat bacterial
diseases (Homem and Santos, 2011; Singh, 2015). QSIs, such as
the natural furanones of (5Z)-4-bromo-5-(bromomethykene)-3-
butyl-2(5H)-furanone (Figure 2E; Defoirdt et al., 2006, 2007a,b),
halogenated furanones (Zang et al., 2009), furanones F2 (Liu
et al., 2010), brominated 3-alkyl-5-methylene-2(5H)-furanones,
and alkylmaleic anhydrides (Steenackers et al., 2010), and
other chemicals of thiophenone (Z)-4-((5-(bromomethylene)-2-
oxo-2,5-dihydrothiophen-3-yl)-4-oxobutanoic acid) (Figure 2N;
Defoirdt et al., 2012; Pande et al., 2013), are effective in
attenuating bacterial virulence. Because the therapeutic index

of furanones is likely too low to be used in the aquaculture
given their relatively high toxicity to higher organisms (Defoirdt
et al., 2006; Pande et al., 2013), non-toxic natural compounds
were explored. Cinnamaldehyde (Figure 2O), a QS-disrupting
compound, protects burbot (Lota lota L.) larvae from A.
hydrophila and A. salmonicida (Natrah et al., 2012), the giant
freshwater prawn Macrobrachium rosenbergii from V. harveyi
(Pande et al., 2013) and brine shrimp larvae from V. harveyi
(Brackman et al., 2013). Coumarin (Figure 2P) was effective in
reducing the biofilm formation of E. tarda, V. anguillarum, E.
coli, and Staphylococcus aureus. The above four strains use three
types of autoinducers, e.g., AHLs, AI-2, and agr, suggesting that
coumarin could be used as a universal QS inhibitor to attenuate
bacterial disease in aquaculture (Gutiérrez-Barranquero et al.,
2015). The trend of using probiotic microorganisms to control
disease in aquaculture is encouraging, as they can disrupt the
QS systems of pathogens. The positive effect of AHL-degrading
Bacillus sp. may result from the degradation of autoinducers
in addition to the production of growth-inhibiting substances
(Defoirdt et al., 2004). The microalgae Chlorella saccharophila
CCAP211/48, which is commonly used in aquaculture, exhibited
stable inhibitory activity on V. harveyi with the production of QS
antagonistic metabolites that have not been reported previously
in microalgae (Natrah et al., 2011a).

OPPORTUNITIES AND CHALLENGES

QS systems dynamically control gene expression in a cell density-
dependent manner, based on the production, secretion, and
detection of autoinducers. The concentration of autoinducers
increases with the cell density. Once a threshold level is
achieved, autoinducers induce the expression of QS-dependent
target genes to facilitate environmental adaptation. As a global
gene regulatory network, autoinducer-induced QS systems are
involved in the regulation of bacterial virulence, conjugative
plasmid transfer, sporulation, biofilm formation, antimicrobial
peptide synthesis, and symbiosis. Future studies and applications
of autoinducer-induced QS systems may focus on the following
aspects.

• Although increasing attention has been paid to the ecological
applications of QS regulation of biofilms, the mechanism
by which bacterial autoinducer-induced QS systems operate
in the “city” of biofilms remains rudimentary. A clear
understanding is required to explore how the biofilm
influences the initial QS system and subsequently the QS-
regulated gene expression profiles and the development of
multi-species biofilms.

• The QS system plays an important role in biodegradation.
Thus, QS manipulation may become increasingly important
in biodegradation and environmental bioremediation at the
population/community and molecular level. However, QS
systems have not gained the attention that they deserve
in biodegradation compared with their function in many
other biological processes. Further, study of the QS systems
in biodegradation may accelerate the speed and rate of
pollutant degradation. Additionally, the improvement of
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biodegradation efficiency by engineering the QS system is
in progress and is a strategy that deserves more attention
in the future. Moreover, the aromatic degradation pathway
is a source of new signaling molecules and/or QQ signaling
molecules. Thus, QS regulation of aromatic degradation
processes and the latter as sources of signaling molecules are
also notable topics.

• The design of novel antimicrobial agents based on QS
regulation to control bacterial infections is recommended,
despite that it will likely be many years before clinically
safe and effective QSIs are available for real-life applications.
Considering the fact that microbial consortia are composed
of different species and a wide range of QS-regulated gene
expression, it should be noted that the entire QS-regulated
network would not be affected by the QSI of a particular QS
pathway.

Developments in the field of QS and the QS-regulated behaviors
in the natural environment and host will clearly address these
questions. The answers to these open questions will undoubtedly
bring new insights and surprises.
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