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Complexity of cellular response to oxidative stress (OS) stems from its wide-ranging damage to
nucleic acids, proteins, carbohydrates, and lipids. We have constructed a systems model of OS
response (OSR) for Halobacterium salinarum NRC-1 in an attempt to understand the architecture of
its regulatory network that coordinates this complex response. This has revealed a multi-tiered
OS-management program to transcriptionally coordinate three peroxidase/catalase enzymes, two
superoxide dismutases, production of rhodopsins, carotenoids and gas vesicles, metal trafficking,
and various other aspects of metabolism. Through experimental validation of interactions within
the OSR regulatory network, we show that despite their inability to directly sense reactive oxygen
species, general transcription factors have an important function in coordinating this response.
Remarkably, a significant fraction of this OSR was accurately recapitulated by a model that was
earlier constructed from cellular responses to diverse environmental perturbations—this
constitutes the general stress response component. Notwithstanding this observation, comparison
of the two models has identified the coordination of frontline defense and repair systems by
regulatory mechanisms that are triggered uniquely by severe OS and not by other environmental
stressors, including sub-inhibitory levels of redox-active metals, extreme changes in oxygen
tension, and a sub-lethal dose of c rays.
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Introduction

Reactive oxygen species (ROS), such as hydrogen peroxide
(H2O2), superoxide (O2

�), and hydroxyl (OH�) radicals are
normal by-products of aerobic metabolism. Evolutionarily
conserved mechanisms including detoxification enzymes
(peroxidase/catalase and superoxide dismutase (SOD)) and
free radical scavengers manage this endogenous production of
ROS. Oxidative stress (OS) is a condition reached when certain
environmental stresses or genetic defects cause the production
of ROS to exceed the management capacity. The damage to
diverse cellular components including DNA, proteins, lipids,
and carbohydrates resulting from OS (Imlay, 2003; Apel and
Hirt, 2004; Perrone et al, 2008) is recognized as an important
player in many diseases and in the aging process (Finkel,
2005).

A great deal of information exists on specific detoxification
enzymes, ion scavengers, and their associated regulators. For

instance, in Eshcherichia coli, it is known that the oxyR
regulon is induced by higher levels of H2O2, whereas the
soxRS regulon is activated by exposure to redox-cycling
agents (Zheng and Storz, 2000; Green and Paget, 2004;
Imlay, 2008). Activation of many of these regulators by
metals, radiation, and starvation conditions shows how
diverse environmental factors (EFs) can directly or indirectly
increase production of ROS. Not surprisingly, the regulation
of OS response (OSR) is tied to circuits that manage
diverse processes including metal trafficking, nutrient trans-
port, and general aspects of metabolism. The function of metal
trafficking is especially important given the function of
transition metals, iron in particular, in the production
of highly reactive OH� through the Fenton reaction. It is
clear from all of these earlier studies that a systems approach
will be necessary to fully appreciate the highly intercon-
nected nature of the regulatory networks that manage OSR
(Temple et al, 2005).
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Given that many archaea thrive in extreme environments
associated with elevated production of ROS, it is intriguing to
consider these organisms as models for characterizing global
regulatory networks that efficiently manage extreme OS during
normal metabolism (Joshi and Dennis, 1993; Kawakami et al,
2004; Limauro et al, 2008). Furthermore, although archaeal
transcriptional regulation is mediated by regulators of
bacterial ancestry, many of the known bacterial OSR regulators
are absent in this domain of life (Coulson et al, 2007). Here, we
have applied a systems approach to characterize the OSR of an
archaeal model organism, Halobacterium salinarum NRC-1.
This haloarchaeon grows aerobically at 4.3 M salt concentra-
tion in which it routinely faces cycles of desiccation and
rehydration, and increased ultraviolet radiation—both of
which can increase the production of ROS (Farr and Kogoma,
1991; Oliver et al, 2001). We have reconstructed the
physiological adjustments associated with management of
excessive OS through the analysis of global dynamic transcrip-
tional changes elicited by constant exposure to growth sub-
inhibitory and sub-lethal levels of H2O2 and paraquat (PQ—a
redox-cycling drug that produces O2

�; Hassan and Fridovich,
1979) as well as during subsequent recovery from these
stresses. We have integrated all of these data into a unified
model for OSR to these ROS to discover conditional functional
links between protective mechanisms and normal aspects of
metabolism. Subsequent phenotypic analysis of gene deletion
strains has verified the conditional detoxification functions of
three putative peroxidase/catalase enzymes, two SODs, and
the protective function of rhodopsins under increased levels of
H2O2 and PQ. Similarly, we have also validated ROS scaven-
ging by carotenoids and flotation by gas vesicles as secondary
mechanisms that may minimize OS. Although it has been
known that OS is a component of diverse environmental stress
conditions, we quantitatively show for the first time that much
of the transcriptional responses induced by the two treatments
could indeed have been predicted using a model constructed
from the analysis of transcriptional responses to changes in
other EFs (UV and g-radiation, light, oxygen, and six metals).
However, using specific examples, we also reveal the specific
components of the OSR that are triggered only under severe
OS. Notably, this model of OSR gives a unified perspective of
the interconnections among all of these generalized and OS-
specific regulatory mechanisms.

Results and discussion

We present the results and discussion in six sections (A–F)
starting with (A) characterization of growth and survival
characteristics of H. salinarum NRC-1 under increasing doses
of H2O2 and PQ, (B) analysis of global dynamic transcriptional
responses to selected sub-inhibitory and sub-lethal doses of
the two stressors, (C) inference of a globally integrated model
of conditionally co-regulated genes and their sub-circuits, (D)
experimental validation of important hypotheses regarding
primary and secondary defense mechanisms and their func-
tional relationships, (E) statistical evaluation of generalized
and specific aspects of OS management, and (F) summary of
the integrated program for OS management.

Distinct differences in phenotypic responses
to H2O2 and PQ

We first characterized survival and growth characteristics of
H. salinarum NRC-1 with increasing doses of H2O2 and O2

�.
Although peroxide stress was generated by directly adding
H2O2 to a desired concentration (titration doses for survival
studies: 0–40 mM; growth studies: 0–7 mM), O2

� radicals were
generated indirectly during metabolism of exogenously added
PQ (titration doses for survival studies: 0–10 mM; growth
studies: 0–0.5 mM) (Hassan and Fridovich, 1979) (Figure 1).
Interestingly, the cells withstood exogenously added H2O2

stress up to a concentration of B30 mM beyond which their
survival dropped precipitously. This sharp transition was also
observed at the level of growth wherein the cells grew
normally in up to 5–6 mM H2O2 and a smallest increase
thereafter resulted in complete growth inhibition. This
indicates that in the absence of earlier conditioning to low
doses of OS (Cabiscol et al, 2000; Brioukhanov et al, 2006;
Limauro et al, 2006), there exists a threshold to the cellular
capacity to detoxify H2O2 and that even traces of peroxide
beyond this threshold can result in devastating oxidative
damage to cellular components. This phenotypic behavior
under H2O2 stress is in stark contrast to the gradual loss in
survival and growth observed under increasing O2

� stress. The
growth and survival assays aided in the selection of appro-
priate concentrations of H2O2 and PQ for subsequent
transcriptomic analysis. The enormous amount of the two
stress agents required to achieve sub-lethal effects is a
testament to the remarkable capacity of this organism to
efficiently eliminate and keep intracellular concentration of
ROS within physiologically acceptable limits.

Global transcriptional analysis reveals shared
and specific responses to peroxide and O2

�

We sought to model OSR at a systems scale by characterizing
OS-management mechanisms and unraveling the gene reg-
ulatory programs that coordinate their operation with other
aspects of metabolism. We approached this problem by
charting dynamic global transcriptional changes for up to 4 h
during and after exposure to sub-lethal concentrations of each
PQ (4 mM) and H2O2 (25 mM) that resulted in 20–30% loss of
survival (Figure 2; Supplementary Figures S1 and S2;
Supplementary Tables S1–S3). Further, we also characterized
transcriptional responses during nearly 6 h of acclimation
to a growth sub-inhibitory dose of PQ (0.25 mM) (this was
not possible for peroxide stress owing to the sharp transition
in growth with small concentration increases of H2O2)
(Supplementary Figure S3; Supplementary Table S4). Together
with control experiments and replicates, this represented
nearly 300 high-density microarray experiments. We summar-
ize discoveries from integrated analyses of data from
these experiments (Materials and methods) (Supplementary
Figure S1).

Exposure to both ROS resulted in differential regulation of a
larger proportion of genes over time involving up to 50% of all
genes at steady state. In contrast, transcriptional changes
became somewhat subdued over time during recovery from
both OS conditions (Supplementary Figure S1). Nearly half of
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all differentially regulated genes (563 genes) were shared by
the two stress responses—perhaps reflecting a generalized OS
component (Supplementary Table S1). Notably, differential
regulation of an equivalent fraction of genes (H2O2: 366 genes;
PQ: 536 genes) was unique to each response. Some unique
aspects of responses to the two ROS and between responses to
sub-lethal and sub-inhibitory doses of PQ are noted in the
Supplementary information (Figure 2; Supplementary Figures
S2 and S3). By simultaneously analyzing putative functional
assignments (Bonneau et al, 2004) and transcriptional
changes, we have reconstructed physiological consequences
of long-term exposures to and recovery from excessive H2O2

and O2
� stress (Figure 2; Supplementary Figures S1–S3;

Supplementary Tables S2–S4). We provide a summary of this
analysis with emphasis on OS-related functions; observations
pertaining to adjustments in general aspects of physiology
including ribosome biogenesis, oxidative phosphorylation,
and carbohydrate and nucleotide metabolism during the OSR
are summarized in the Supplementary information.

ROS scavenging and detoxification
Many of the primary OS-management systems including
detoxification by SODs, peroxidase/catalase, and peroxiredox-
ins, and radical scavenging by antioxidants, and reduction of
radicals by redoxins (Storz and Imlay, 1999; Grant, 2001;
Zheng et al, 2001; Toledano et al, 2007; Imlay, 2008) were

upregulated by both treatments (Figure 2O, P and S;
Supplementary Table S2). Notably, in addition to upregulation
of the classic peroxidase/catalase [VNG6294G (perA)—
PF00141], we observed transcriptional induction of at least
two additional enzymes of related function—VNG0798H, a
putative dye-decolorizing peroxidase (PF04261, COG2837)
(Sugano et al, 2007; Scheibner et al, 2008) and VNG0018H,
whose predicted structure matches that of catalase [PDB:
1cf9A2; (Mate et al, 1999)]. VNG1190G (sod1) and peroxir-
edoxins [VNG1197G (bcp), VNG2311H] were upregulated to a
higher degree with PQ than with H2O2, suggesting that
different regulatory circuits are responsible for managing
ROS generated by the two treatments (Brioukhanov et al, 2006;
Limauro et al, 2006, 2008). Upregulation of a number of other
processes was also consistent with their functions in relation
to OS including carotenoid synthesis [VNG1458G (crtB1),
VNG1755G (crtI2)] and glycerol metabolism [VNG6277G
(ugpB), VNG6279G (ugpA), VNG1967G (glpK), VNG6270G
(gldA)] (Pahlman et al, 2001) (Figure 2A, B, and N).

Repair of oxidative damage
Although DNA repair mechanisms were in general regulated in
a similar manner by both agents (Figure 2T; Supplementary
Table S2), PQ treatment uniquely upregulated certain repair
and recombination genes including VNG2473G (radA1),
ssDNA binding (VNG1255C and VNG 2160C), and DNA
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Figure 1 Growth and survival of H. salinarum NRC-1 with H2O2 and PQ. Effect of increasing concentrations of H2O2 and PQ on growth (A, B) and survival (C, D) of
H. salinarum NRC-1 in complete media (CM). Growth was measured by determining increase in cell density (OD600) at 30 min intervals using a Bioscreen instrument.
Survival was calculated as ratio of number of viable cells (N) after 2 h treatment with varying doses of H2O2 or PQ to number of viable cells (No) in control. Black arrows
represent dosage at which microarray analyses were performed. Data shown is representative of the experiments, which were repeated three times.
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helicase [VNG1406G (rhl)]. Although it is clear from upregula-
tion of proteases [VNG0205H, VNG0354C, VNG2096G (cctB),
VNG0226G (htrA), VNG1951G (sub), VNG2323H, VNG6201G
(hsp5), VNG6361G (npa)] that protein degradation was
upregulated by both treatments (Figure 2U), it was striking
that unlike the upregulation of ribosomal genes for replacing
damaged proteins (Thorpe et al, 2004) under H2O2 stress,
these genes were downregulated with PQ—even after the
stress was taken away. We speculate that the sub-lethal dose
of PQ (4 mM) was more damaging to proteins relative to
H2O2 (25 mM), despite their comparable phenotypic effects
(20–30% loss in survival). This is not surprising as PQ
primarily generates O2

� ions, which are known to be
particularly deleterious to proteins as they increase the
production of highly reactive OH� radicals through the Fenton
reaction by releasing free Fe2þ from solvent-exposed 4Fe-4S
cluster of labile dehydratases (Imlay, 2003). As expected,
lowering the dose of PQ to sub-inhibitory levels induced
transcription of both proteases and ribosome biogenesis
(Supplementary Figure S3).

Regulation of Fe–S metabolism
Most transcriptional changes induced by both treatments were
over-represented for Fe-dependent and Fe–S-containing
enzymes (Supplementary Figure S4; Supplementary
Tables S5 and S6). For instance, a simple analysis of Fe–S
cluster-associated motif-containing proteins shows that six of
eight (P¼0.1) putative electron transfer system proteins
(CX2CX2CX3C) and seven of nine (P¼0.08) putative enzymes
requiring S-adenosylmethionine (SAM) (CX3CX2C) were dif-
ferentially expressed under OS (Supplementary Tables S5 and
S6). This is not surprising as Fe–S clusters are used as cofactors
by many redox proteins, radical SAM enzymes, and RNA
polymerase (Boyd et al, 2009), and are important for electron
transfer reactions and gene regulation as they sense changes in
Fe, O2, and O2

� (Fontecave, 2006; Outten, 2007) (Figures 2, 3;
Supplementary Tables S2 and S3). It has been proposed that
conversion of Fe2þ to Fe3þ could trigger three types of
responses: a Fe-deficiency such as response to bring in more Fe
into the cell; an effort to repair or re-synthesize proteins with
damaged Fe–S clusters and S-containing amino acids; and a
protective response to sequester Fe in a non-reactive form
(Varghese et al, 2007; Imlay, 2008). Consistent with this,
cellular effort to scavenge and sequester Fe, and simulta-
neously repair both damaged Fe–S clusters and S-containing
amino acids was reflected in the upregulation of genes
encoding Fe-scavengers: [putative siderophore biosynthesis
[VNG6213G (iucB), VNG6212G (iucA), VNG6214G (hxyA),
VNG6216G (iucC)] (Imlay, 2006)]; iron sequestration [ferritin
[VNG2443G (dpsA)] (Andrews et al, 2003; Reindel et al, 2006;
Shukla, 2006)]; S uptake [VNG1592G (cysT2)]; assembly of
Fe–S clusters [VNG0524G (yurY), VNG0525C, VNG0527C]
(Takahashi and Tokumoto, 2002; Loiseau et al, 2003);
biosynthesis of cysteine and methionine [VNG0796G (cgs),
VNG2420G (metA), VNG2421G (hal), and VNG1301G (cysK)];
and repair of oxidized cysteines and methionines [VNG1180G
(msrA)] (Stadtman et al, 2003; Stadtman, 2006; Metayer et al,
2008) (Figure 2; Supplementary Table S2).

An integrated predictive model for OS
management

Data presented here and earlier (Causton et al, 2001) have
clearly shown that OSR is a global phenomenon impacting a
wide array of cellular processes encoded by at least 50% of all
genes (Figure 2; Supplementary Figure S2 and S3; Supple-
mentary Table S1). We have taken a step toward construction
of a predictive model for global transcriptional coordination of
the OSR. Briefly, using the cMonkey algorithm (Reiss et al,
2006), we integrated transcriptome changes, gene functional
associations (phylogenetic profiles, chromosomal proximity,
operon organization, metabolic networks, etc.), and de novo
discovered conserved cis-regulatory motifs to identify subsets
of genes that are conditionally co-regulated by OS (biclusters).
Subsequently, we constructed an environment and gene
regulatory influence network for OS (EGRINos) by performing
linear regression and model selection using the Inferelator
algorithm (Bonneau et al, 2006, 2007). Analysis of regulatory
influences of TFs and the two OS agents on each bicluster
within this model has recapitulated earlier known regulatory
phenomena for managing OS and revealed new putative
regulatory links among diverse cellular processes.

Discovery of co-regulated genes reveals new
regulatory links among different OS components
Altogether, 1165 genes were grouped into 100 biclusters
using the cMonkey algorithm (Supplementary Table S7). Using
two examples, we show how this integrated the analysis of
genes, environmental conditions, functional associations, and
shared cis-regulatory motifs within individual biclusters has
discovered numerous regulons and provided evidence for
conditional co-regulation of diverse functions during OSR
(Figure 3).

Example 1: Analysis of bicluster #84 (bc84) has provided
evidence for the potential transcriptional co-regulation of sod1
with several redoxins, a thioredoxin reductase, bacterioferri-
tin, cysteine biosynthesis/repair enzymes, molecular chape-
rones, and five genes with no matches to protein sequence or
signature of characterized function. Though it has been shown
that sod1 and cysteine repair systems are part of the SoxRS
regulon and Fe scavenging is part of the OxyR regulon (Imlay,
2008), global analysis has shown the two regulons to be
overlapping (Farr and Kogoma, 1991; Zheng et al, 2001).
Similarly, the gene composition of bc84 suggests that this
regulon is analogous to a functional hybrid of the SoxRS and
OxyR systems in E. coli. However, there are no orthologs for
either of these regulators in H. salinarum NRC-1 (Coulson et al,
2007). Subsequent regulatory network inference with Infer-
elator has helped identify potential regulator(s) that mediate
this control (see below). Notably, co-expression of the 23
genes was especially prominent in PQ-treated cells. Although
this is consistent with the O2

�-specific function of some of these
genes (e.g. sod1), it also suggests similar ROS-specific
functions for some of the other genes.

Example 2: In bc12, we have discovered potential co-
regulation of genes encoding siderophore biosynthesis,
ferrichrome transport, a thioredoxin reductase, and eight
earlier unknown function proteins. The regulatory link
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between siderophore biosynthesis and ferrichrome transport is
not surprising given their shared functions in managing
intracellular Fe pool (Andrews et al, 2003), and their
conditional co-regulation during an OSR, especially H2O2

stress, in E. coli and Bacillus subtilis (Imlay, 2008). However,
evidence for co-regulation of this process with a chromosome
partitioning gene [VNG6153G (sojC2)], thioredoxin reductase
[VNG2301G (trxB3)], and eight genes of unassigned functions
is new information. A single conserved palindromic motif
within the promoters of all genes within this bicluster

suggested that this regulon is under the direct control of a
single TF (Figure 3).

In comparing the distribution of genes in the two biclusters
discussed above, we also note that this integrated analysis has
helped hypothesize condition-specific functions for genes of
related function [redox homeostasis (e.g. thioredoxin reduc-
tase, glutaredoxin, and peroxiredoxins), 12 Fe-management
genes, proteolysis, cobalamin biosynthesis, and O2

� metabo-
lism] as well as putative functions for at least three genes
(VNG1092C, VNG0248C, VNG2299H) of earlier unknown
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function. Interactive exploration of all biclusters to enable
similar discoveries is possible online at http://baliga.
systemsbiology.net/drupal/content/egrin-oxidative-stress.

A unified model for global transcriptional coordination
of responses to treatments with H2O2 and PQ
OSR regulators are typically associated with redox-active
cofactors such as haem, flavins, pyridine nucleotides, Fe–S
clusters, and redox-sensitive amino-acid side chains such as
cysteinyl thiols (Green and Paget, 2004). Altogether, 26 TFs
and 17 signal transducers [containing methyl-accepting
chemotaxis protein (MCP)-signaling domain] in H. salinarum
NRC-1 have matches to motif signatures for these OS-sensing
features (Zheng and Storz, 2000; Fomenko and Gladyshev,
2002; Paget and Buttner, 2003; Fontecave, 2006). A significant
fraction of these regulators (21 TFs and 13 signal transducers)
was differentially regulated in response to H2O2 and/or PQ
treatments (Supplementary Table S5). Although the high
degree of cross-regulation that we observed might result from
chemical inter-conversions among ROS (Liochev and Frido-
vich, 2007), it is more likely because of regulators that sense a
globally affecting parameter such as the overall redox status
(Demple, 1997; Zheng and Storz, 2000) or metal ion
composition of the cell (Touati, 2000; Moore and Helmann,
2005; Lee and Helmann, 2006). However, even though the
trigger (e.g. redox status) for many of these regulators is the
same, their mechanism of activation and the genes they
regulate are nonetheless different. In E. coli, for instance, in
response to O2

� stress, SoxR gets activated through oxidation of
its Fe–S cluster and regulates a specific subset of genes that is
distinct from those controlled by OxyR, which is activated
through oxidation of cysteine residue(s) under H2O2 stress
(Zheng and Storz, 2000; Imlay, 2008). In our study as well, we
have observed unique transcriptional responses, such as
upregulation of three thioredoxins [VNG1012H, VNG1259G
(trxB2), VNG2600G (trxA2)] and a DNA repair gene VNG2473G
(radA1) by PQ, but not by H2O2, suggesting involvement of
several ROS-specific regulatory mechanisms in mediating the
global OSR.

We have taken a step toward a systems level model (Figure 4)
that collectively explains these OS-induced gene-expression
changes as a function of shared and unique influences of TFs
and two ROS. These regulatory influences in EGRINOS

recapitulate the global transcriptional changes observed
during an OSR (Supplementary Figure S5). EGRINOS also
provides meaningful insight into the interrelationships among
stress-management systems and general aspects of physiology
under H2O2 and PQ stress (Figure 4). The architecture of the
model reveals that the OSR network has significant overlap
with response networks that manage other kinds of stress. For
instance, a common set of TFs are predicted to coordinate
genes in bc6, which contains the putative dye-decolorizing
peroxidase (VNG0798H), with those in bc84 (contains sod1)
and bc12 (contains Fe-management proteins) (bc84 and bc12
are discussed in detail above). Likewise, OSR genes within
bc26 (a monooxygenase, several thioredoxin reductases,
methionine sulfoxide reductase msrA, cysteine synthetase
cysK, and a putative protease) are positively influenced by the
same putative TF (Imd1) that also negatively influences

transcription of cobalamin synthesis and ATP synthase genes
in bc91. Finally, three biclusters containing genes of diverse
redox-reactive functions (bc17—carotenoid biosynthesis;
bc33—siderophore biosynthesis; bc71—antioxidant synth-
esis) are co-regulated by TFs with redox-sensing and metal-
binding domains. In the following sections, we show how
EGRINOS can be used as a framework to formulate experi-
mentally testable hypotheses for characterizing general and
specific components of the OSR.

The architecture of this statistically inferred network
(Figure 4A) can be used to formulate hypotheses regarding
combinatorial control of cellular processes during an environ-
mental response, OSR in this case. These hypotheses can be
tested by validating physical interactions of TFs with
promoters of genes they are predicted to regulate, and by
analyzing transcriptional and phenotypic consequences of
genetically perturbing TFs in the network. Using a combina-
tion of such experimental validations, we have overcome the
complexities presented by extensive buffering within such
networks because of multiple redundancies for regulation and
stress management. We have validated regulatory influences
of six TFs [Trh4 and five general transcription factors (GTFs—
TFBb, c, d, f, and g)] in the OSR network by showing their
physical interactions with promoters of target genes, and
consequence of deleting some of these TFs on expression of
these genes (TFBd and c) and, more importantly, on survival
rate (TFBc) under OS. Specifically, we have validated
combinatorial control of genes within the same bicluster
(bc88) by multiple TFs (Trh4, TFBb, TFBf, and TFBg;
Figure 4B; Supplementary Table S9), differential regulation
of genes in different biclusters (bc3, bc81, bc72, and bc33) by
the same TF (TFBd) (Figure 4C), and diminished capacity to
withstand OS on deleting a predicted TF (TFBc) within this
network (Figure 4D). The consequence of deleting TFBc on
increased susceptibility to OS can now be further investigated
in the context of its function in coordinating specific processes
as predicted by EGRINOS.

Phenotypic analysis of mutants reveals
a multi-tiered program for OS management

In addition to validating architecture of EGRINOS, we have also
conducted phenotypic analysis of strains with in-frame
chromosomal deletions in genes identified to be important
in OS management based on their putative functions, their
transcriptional changes in response to OS, and the EGRINos

model. Specifically, we investigated the functions of two
SODs, three putative peroxidase/catalase genes, carotenoids,
rhodopsins, and gas vesicles in OS management (Figures 5
and 6).

Two SODs (SOD1 and SOD2) offer protection against
PQ treatment but not against H2O2

According to the EGRINos model, the two SOD genes are not
co-regulated even by PQ treatment, which predominantly
generates O2

� stress in which their function is expected to be
most relevant, suggesting distinct functions for the two
orthologs. The co-regulation of VNG1190G (sod1) with
genes encoding methionine sulfoxide reductase [VNG1180G
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(msrA)], cysteine synthase [VNG1301G (cysK)], thioredoxin
[VNG1259G (trxB2)], and a ferritin [VNG2443G (dpsA)] (see
bc84) suggested a more significant function for this ortholog in
providing protection against OS. In agreement with this

hypothesis, a knockout in sod1, but not VNG1332G (sod2),
resulted in hypersensitivity to PQ treatment (Figure 5A and B).
However, simultaneous deletions of both orthologs further
increased sensitivity to O2

� stress, relative to the Dsod1 mutant
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Figure 4 EGRINOS: environment and gene regulatory influence network for oxidative stress. (A) EGRINOS was constructed by applying the Inferelator algorithm to
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genes within the same bicluster (bc88). Further, these TFs also bind promoters of genes in other biclusters that they are predicted to regulate. The network is drawn as a
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all stages of growth in batch culture. This example validates the EGRINOS predicted regulation by TFBd and illustrates how a TF coordinates transcription of genes
involved in different processes during OSR. (D) Finally, the deletion of TFBc, which is predicted to coordinate amino-acid metabolism and iron metabolism genes, results
in increased sensitivity to 4 mM PQ [transcription factor-binding sites for the six TFs (indicated with red stars in panel A) are listed in Supplementary Table S9].
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(Figure 5B). Together with the observation that sod2 was
upregulated only by treatment with a sub-lethal dose of PQ
(Figure 2; Supplementary Figure S3), this suggested that this
ortholog provides marginal protection against excessive O2

�

stress. However, this does not rule out a more significant

function for this enzyme under specialized conditions
(Valderas and Hart, 2001). Notably, unlike in other organisms
(Carlioz and Touati, 1986), neither of the two SODs,
individually or together, provided any protection against
H2O2 stress (Figure 5B).
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perA (peroxidase), VNG0798H (a putative ‘dye-
decolorizing’ peroxidase), and VNG0018H (a protein
of earlier unknown function) offer protection against
H2O2 stress and some cross-protection to O2

�

Consistent with its anticipated function in scavenging H2O2,
deletion of the putative peroxidase/catalase gene perA
resulted in poor growth under oxic conditions and hypersen-
sitivity to H2O2 (Figure 5C; Supplementary Figure S6). The
onset of growth of the DperA strain after a prolonged lag phase
coincided with a corresponding drop in intracellular H2O2

content from B6 to o2 mM (levels observed in typical wild-
type cell cultures; all measurements of H2O2 were normalized
to 108 cells) (Figure 6A) (Gonzalez-Flecha and Demple, 1997;
Seaver and Imlay, 2001). This suggested the presence of
additional mechanism(s) to handle peroxide stress. The
EGRINOS model suggested two candidate genes: VNG0798H
and VNG0018H. VNG0798H, which has a weak borderline
match to a protein family signature for dye-decolorizing
peroxidases (PF04261, e-value B0.02), was upregulated by
both H2O2 and PQ, and co-expressed with carotenoid
biosynthesis enzymes, gas vesicle biogenesis proteins, and a
putative heat shock protein (bc85) [http://baliga.systemsbiology.
net/drupal/content/egrin-oxidative-stress]. Moreover, VNG0798H
shares Inferelator-discovered regulatory influences with sod1
and Fe-management proteins [section ‘A unified model for
global transcriptional coordination of responses to treatments
with H2O2 and PQ’; Figure 4]. Likewise, VNG0018H, whose
predicted protein structure (in lieu of absence of a sequence-
based match to characterized proteins) matches that of a
catalase (PDB: 1cf9A2; Mate et al, 1999) (Bonneau et al, 2004)
was upregulated under H2O2 stress. Knockouts in these
candidate genes validated their functions in providing partial
protection against H2O2 stress (Figure 5C). Although deletion
of perA resulted in complete loss of viability at 25 mM H2O2,
deletion of VNG0798H and VNG0018H resulted in 99.9 and
62% reduction in survival, respectively (Figure 5C; Supple-
mentary Figure S6). Furthermore, knockouts in perA and
VNG0018H also resulted in 54 and 67% loss in survival,
respectively, when challenged with 4 mM PQ (Figure 5B;
Supplementary Figure S6).

Secondary mechanisms for OS management
The co-regulation of genes encoding rhodopsins, carotenoids,
and gas vesicles with several known mechanisms to detoxify
and manage ROS (e.g. in bc85—http://baliga.systemsbiology.
net/drupal/content/egrin-oxidative-stress) suggested impor-
tant functions for these processes in OS management
(Figure 4). Culture characteristics of the perA and SOD
mutants (Figure 6B and C) in conjunction with phenotypic
analysis and transcriptomics further supported secondary
protective functions for these functions and provided
clues into their regulatory links to the primary protective
mechanisms.

(a) Rhodopsins and carotenoids have distinct functions in
peroxide and superoxide stress management: Pigments
such as carotenoids, which are intermediates in synthesis
of the retinal chromophore found in rhodopsins (Kushwa-
ha et al, 1974), are known to act as antioxidants (Di

Mascio et al, 1991). Consistent with this known function,
the transcription of several genes involved in carotenoid
biosynthesis [VNG1458G (crtB1), VNG1684G (crtI1),
VNG1755G (crtI2), VNG1680G (crtB2), VNG1465G (brp)]
and one opsin VNG1467G (bop) were upregulated during
and/or after exposure to H2O2 and PQ (Figure 2M and N).
This is also consistent with earlier knowledge that
transcriptional regulation of these genes is influenced by
redox status of the cell (Betlach et al, 1989; Yang and
DasSarma, 1990; Shand and Betlach, 1991; Baliga et al,
2001). Furthermore, visual inspection of stationary phase
cultures revealed a distinctly bleached appearance of the
SOD double mutant—an observation that was confirmed
by the fourfold increase in the oxidative degradation rate
of pigments during normal growth of this strain relative to
the wild-type strain (Figure 6C). The specific mechanism
by which carotenoids scavenge ROS is unknown, although
it has been speculated that they act through interference
with reactions of damaging oxidizing agents (Woodall
et al, 1997; Davison et al, 2002). Regardless, an increased
rate of pigment bleaching in the SOD double mutant, but
not the DperA mutant suggests a specific protective
function for carotenoids in defense against O2

� stress. This
also partly explains the normal growth characteristics of
the single and double SOD mutants under standard
laboratory culturing conditions (Supplementary Figure
S6). In contrast, depletion of all four rhodopsins [bacterio-
rhodopsin (bR), halorhodopsin (hR), sensory rhodopsins I
and II (sRI and sRII)] as well as two transducers (HtrI and
HtrII) in Pho81, a strain constructed earlier for character-
izing phototaxis mechanisms (Yao et al, 1994), resulted in
increased peroxide toxicity (Figure 5C), but no difference
in sensitivity to O2

� (data not shown). In H. salinarum
NRC-1, these proteins are involved in light-activated ion-
pumping (bR and hR) and relocation of cells toward or
away from particular wavelengths of radiation by photo-
taxis [sRI and II, and signal transducers (HtrI and II)]. This
is a new function for these integral membrane proteins.
The specific mechanisms by which carotenoids and
rhodopsins provide protection against H2O2 and PQ stress
will require further investigation.

(b) Regulation of gas vesicle biogenesis is linked to peroxide
stress: H2O2 and PQ treatment induced transcription of
genes encoding structural components of gas vesicles.
Further, EGRINOS suggested that under OS (especially
H2O2 stress; see bc85) at least three of these genes
[VNG6236G (gvpG2), VNG6237G (gvpF2), VNG6239G
(gvpE2)] are co-induced with the dyp-type peroxidase
(VNG0798H), a thioredoxin [VNG5076G (trxA1)], and a
putative heat shock protein [VNG1801G (hsp1)]. The
induction of purple membrane biogenesis and DMSO
fermentation during OS, especially H2O2 treatment
(Figure 2) suggests an OS-induced shift in physiology to
one that is better suited for low oxygen conditions, so as to
minimize the production of additional radicals. Induction
of gas vesicle biogenesis under low O2 tension is well
known and speculated to be a mechanism used by
H. salinarum NRC-1 for scavenging traces of O2 through
floatation (Yang and DasSarma, 1990; Schmid et al, 2007).
However, in the context of OS, flotation because of vesicle
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production would be problematic, as it would increase
exposure to O2. Intriguingly, deletion of perA abolished
gas vesicle biogenesis resulting in a sinking phenotype
(Figure 6B)—a phenomenon also displayed by cyanobac-
teria that are subjected to OS (Berman-Frank et al, 2004).
In H. salinarum NRC-1, this appears to be mediated
through post-transcriptional suppression of gas vesicle
biogenesis despite increased transcript levels of these
genes under conditions of increased H2O2 stress.

Generalized and unique components of OSR

It is generally accepted that a significant proportion of cellular
responses to diverse types of environmental stress (metals,
radiation, starvation, etc.) is shared and constitutes a general-
ized OS component. We investigated this idea quantitatively
by evaluating the degree to which the EGRIN model
constructed from responses to perturbations in diverse EFs
(six metals, O2, light, UV and g-radiation) was able to predict
transcriptional changes induced by H2O2 and PQ treatment.
First, using the measured values of just 72 TFs, 9 EFs, and their
regulatory influences in the EGRIN model, we predicted
transcriptional changes in 80% of all genes in 5000 resampled
datasets of 140 experiments each. These datasets were
randomly assembled from a pool of 722 new experiments that
were not used to construct the model and that did not include
any OS experiments (Supplementary Figure S7). This analysis
showed the remarkable robustness with which the EGRIN
model consistently made accurate global predictions with a
mean error (RMSD) of 0.36±0.01. Next, we used the model to
make predictions of global gene-expression changes in the 140
experiments (including controls) that specifically investigated
transcriptional responses to treatments with H2O2 and PQ.
Remarkably, the model predicted global gene-expression
changes induced by OS with similar accuracy, suggesting that
most regulatory phenomena triggered by OS are also active
during responses to other EFs. Historically, such responses
that are triggered by diverse environmental stresses are
lumped into a loosely defined ‘general stress response.’
Although it might be true that a significant fraction of this
general stress response is an indirect consequence of the
highly interconnected nature of biological networks, many
genes are most certainly triggered by a particular injury or
dysfunction. Notwithstanding this observation, a closer
investigation revealed OS-specific coordinate regulation of
important genes within several regulons that were not
observed in responses to any other EFs. Specifically, regulons
within 22 of the 67 biclusters within EGRINOS (residuals
o0.45) are partially or completely disrupted (R2o0.35) in
other environmental stress conditions such as treatments with
sub-inhibitory doses of redox-active metals including Cu and
Fe (Kaur et al, 2006), a sub-lethal dose of g-radiation
(Whitehead et al, 2006), or extreme changes in oxygen tension
(Schmid et al, 2007) (Figure 7; Supplementary Table S10). The
288 genes within these 22 biclusters encode functions of
detoxification, repair, Fe metabolism, nucleotide metabolism,
and oligo/dipeptide ABC transporters. Although this analysis
validates the notion that a significant fraction of cellular
responses to diverse EFs does indeed constitute a generalized

component, it also reveals specific regulatory mechanism(s)
for the management of excessive OS. The regulon within bc84
is a case in point. Genes within this regulon encode frontline
defense mechanisms that are coordinately upregulated by PQ
treatment, and to a lesser degree by H2O2 treatment, but not by
redox-active metals, g-radiation, or extreme changes in oxygen
tension. Co-regulation of Fe-trafficking genes within bc12 is
another example of this OS-specific regulatory phenomenon
(Figure 7). It will be important to understand natural
circumstances that produce such extreme OS, so we can better
characterize the functional relevance of such OS-specific
regulatory circuits for survival in a hypersaline environment.
Especially important will be the dissection of the hierarchy of
regulatory networks that coordinate the generalized and
specific components of OSR as a function of the degree of
OS. The EGRINOS model lends itself to such an analysis by
providing conditional interrelationships among TFactivities in
the form of joint influences on both response components of
the OSR.

Summary and conclusion

Given the ubiquitous nature of OS, it is not entirely surprising
that most organisms have evolved multiple lines of defense—
both passive and active. Although many of these mechanisms
have been extensively characterized in other organisms, our
integrated systems approach has uncovered additional pro-
tective mechanisms in H. salinarum (e.g. VNG0798H and
VNG0018H). Further, the systems approach has also revealed a
structure and hierarchy to the OSR through conditional
regulatory associations among various components of the
response (Figures 4 and 5). Using this integrated approach, we
can begin to synthesize an understanding of the multi-tiered
program for management of H2O2 and O2

� stress in H.
salinarum NRC-1.

Briefly, H2O2 generated by normal metabolism is primarily
handled by the peroxidase/catalase PerA; when H2O2 produc-
tion exceeds detoxification capabilities of PerA, additional
protection is provided by VNG0018H, rhodopsins, and
VNG0798H, respectively (Figure 5). Uncontrolled accumula-
tion of H2O2 such as on disruption of PerA causes cells to
switch to anaerobic physiology, shutdown gas vesicle biogen-
esis, and sink away from oxygen (Figure 6). Coordinated
upregulation of iron trafficking and management systems
under severe H2O2 stress (bc12) might also serve to minimize
Fenton reaction while keeping with the cellular demand for
iron. O2

� stress, on the other hand, is primarily managed by
SOD1 with additional marginal protection from SOD2. When
challenged with a sub-lethal dose of O2

�, H. salinarum NRC-1
increase the production of carotenoids to take advantage of
their secondary function in scavenging ROS. Severe O2

� stress
results in the co-regulation of several frontline defense and
repair functions including sod1, msrA, and dpsA (bc84)
(Figure 3).

In addition to such O2
�-specific responses, there was also

evidence of crosstalk in responses to H2O2 and O2
� in the

coordination of biclusters containing SOD1 (bc84) and
VNG0798H (bc6) by the same set of regulatory influences
(Figure 4). Likewise, two of the three peroxidases, VNG0018H
and perA, also provide significant cross-protection against O2

�
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stress (Figure 5). Although this is to be expected as ROS are
readily inter-converted such as by dismutation of O2

� to H2O2,
these network connections have also provided insights into the
operational relationships in the crosstalk among two distinct

OS protection mechanisms. These operational relationships
are further extended by the model to other aspects of
physiology. For instance, the model reveals that the simulta-
neous upregulation of genes within bc6 (VNG0798H) and bc84
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(sod1, msrA, dpsA) under certain OS conditions is coordinated
with downregulation of cobalamin synthesis and oxidative
phosphorylation (bc91) in a biologically meaningful manner
(Figure 4). We have validated some aspects of the architecture
of this OSR network by confirming physical protein–DNA
interactions of six TFs with promoters of genes they were
predicted to influence by EGRINOS (Figure 4B). Furthermore,
we have also shown that deleting the TFs results in decreased
transcript levels of predicted target genes and that disruption
of this control can lead to decreased survival rate under OS
(Figure 4C and D). It is notable that the five GTFs whose
functions we have validated cannot directly sense ROS. This
illustrates the importance of the EGRINOS architecture and the
functions GTFs have therein to globally coordinate various
processes during OSR. This systems level insight would not be
possible without integration of diverse global datasets. Finally,
by comparing across active regulatory programs under diverse
environmental stresses, we have quantitatively determined
processes that are specifically triggered by extreme OS
(Figure 7).

Materials and methods

Organism and growth conditions

H. salinarum NRC-1 (wild type), H. salinarum NRC-1Dura3 (parent for
knockout strains), and all gene knockout strains were grown in
complex medium (CM: 250 g/l NaCl, 20 g/l MgSO4, 2 g/l KCl, 3 g/l
sodium citrate, 10 g/l Oxoid brand bacteriological peptone) at 371C and
220 r.p.m. shaking in Innova9400 incubator (New Brunswick). CM
was supplemented with 50 mg/l uracil for strains constructed from a
Dura3 background. Gene deletion mutants were constructed using a
two-step in-frame gene replacement strategy as described earlier (Kaur
et al, 2006) and rhodopsin-deficient strain, Pho81, has been
characterized earlier (Yao et al, 1994).

Growth and survival assay

All strains were grown in CM with continuous shaking (200 r.p.m.) at
371C until late log phase (ODB0.8) and then further diluted into fresh
medium to an optical density of 0.05. These cultures were then
transferred to Honeycomb plate wells of Bioscreen C (Growth Curves
USA, Piscataway, NJ). Different amounts of PQ (0, 0.125, 0.25, and
0.5 mM—final concentrations) or H2O2 (0, 4, 5, 6, and 7 mM—final
concentrations) were added into individual wells. Samples were
incubated at 371C with continuous shaking and growth was monitored
for 48 h in Bioscreen. For survival assay, H. salinarum NRC-1 was
exposed to either 0–100 mM H2O2 or 0–8 mM PQ, whereas knockout
strains were exposed to only 25 mM H2O2 or 4 mM PQ for 2-h
treatment. Cell viability was determined by counting colonies on agar
plates. Sensitivity of Dura3, DperA, DVNG0798H, and Pho81 were also
tested with different concentrations of H2O2 (5, 15, 25 mM). Three
independent measurements were made for each mutant.

Exposure to H2O2 and PQ for RNA preparation and
microarray analysis

Two time courses were run to determine the transcriptional responses
to (1) constant stress and (2) recovery of H. salinarum NRC-1 to H2O2

and PQ. Mid-log phase cultures grown in flasks were treated with sub-
lethal concentrations of 25 mM H2O2 or 4 mM PQ and incubated at
371C with shaking for up to 240 min. During constant stress, culture
aliquots (B4 ml) were collected over a time course (�1, 5, 10, 20, 40,
80, and 160 min), centrifuged (16 000 g, 90 s), and flash frozen. For
recovery, cells were first treated for 2 h with either 25 mM H2O2 or
4 mM PQ, recovered by centrifugation, washed, and re-suspended in
CM. Cultures were returned to the incubator with shaking and samples
were taken at 0, 10, 20, 30, 40, 50, 60, 120, and 240 min and processed
as described earlier. Analysis of temporal transcriptional changes (�1,
0, 5, 10, 20, 40, 80, 160, and 320 m) to sub-inhibitory concentrations of
PQ (0.25 mM) was performed using the BioFlo110 modular bench-top
fermentor (New Brunswick Scientific). Total RNA was prepared using
the Absolutely RNA kit (Stratagene) according to manufacturer’s
instructions. Microarray slide fabrication, labeling with Alexa547 and
Alexa647 dyes (Molecular Probes and Kreatech BV), hybridization,
and washing were performed as described earlier (Baliga et al, 2004).
Raw intensity signals were processed and resultant data were median
normalized and evaluated for statistical significance of differential
expression with significance of microarray (SAM) and variability and
error estimates (VERA) algorithms (Ideker et al, 2000). In constant
datasets, mRNA log10 ratios were normalized to first condition
(control) and data was filtered based on fold change 40.05, l¼15 in
at least one condition. In recovery sets, data was filtered (fold change
40.05, l¼15) and compared with temporal changes in control
experiments. A total of B1400 genes met these criteria. Genes were
further classified into different functional groups according to Kyoto
Encyclopedia of Genes and Genomes, PFAM (http://pfam.sanger.
ac.uk/), and clusters of orthologous groups (http://www.ncbi.nih.
gov/COG). Analysis of microarray results was performed using
hierarchical clustering and Dynamic Regulatory Events Miner (Ernst
et al, 2007), which uses a hidden Markov model to construct dynamic
models for condition-specific gene regulation. The complete micro-
array dataset is available at http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc¼GSE17515.

H2O2 production during aerobic growth

H2O2 production was measured with Amplex Red H2O2 assay
(Molecular Probes—A22188). Late log phase cultures of Dura3, DperA
strains were diluted 1:100 in fresh CM and grown for six days. H2O2

levels were measured along the growth curve at different time points
(21, 29, 36, 48, 72, and 144 h). The rate of H2O2 was normalized to the
number of cells. The relation between OD600 and cell number was
calculated by counting cells in a flow cytometer.

Pigment analysis

Strains (Dura3, Dsod1, Dsod2, Dsod1/sod2) were grown in CM media
at 371C until late stationary phase. Aliquots (1 ml) were withdrawn
from cultures at different time points (B24 h intervals), centrifuged at
16 000 g for 2 min. Pigments were extracted from cell pellets with 90%
cold acetone and analyzed with UV-VIS spectrophotometer (Beckman

Figure 7 Coordination of frontline defense mechanisms under extreme OS. (A) Degree of co-regulation of genes within 67 biclusters (residuals o0.45) in diverse
environmental stress conditions was evaluated by calculating correlations (R2) among their transcript level changes in those experiments. The R2-values were
hierarchically clustered to identify the generalized and specific components of OSR. (B) Pearson’s correlation (R) among mean and variance-normalized transcriptional
changes for four representative biclusters are shown. Biclusters 31 and 37 are examples of the generalized stress response component of OSR with co-regulation across
most environmental conditions. In contrast, co-regulation of genes within biclusters 12 and 84 is much more significant under severe OS conditions. For instance, genes
of bc84 are co-regulated under severe OS resulting from treatment with sub-lethal dose PQ and to a lesser degree H2O2, but not on irradiation with a sub-lethal dose of
g-irradiation (Whitehead et al, 2006), subjecting cells to sudden and extreme changes in O2 tension (Schmid et al, 2007) or treatment with sub-inhibitory dose of transition
metals (Kaur et al, 2006). Genes within bc12, on the other hand, were better co-regulated on treatment with H2O2. Genes within both biclusters (especially bc84) encode
important functions associated with frontline defense mechanisms that provide protection against OS (see Figure 3 and http://baliga.systemsbiology.net/drupal/content/
egrin-oxidative-stress for characteristics of biclusters). (C) A specific example of OS-specific co-regulation: two genes of bc84, sod1 and msrA, are co-induced under
severe OS—especially with PQ treatment—but not coordinately controlled by any other stressful environmental conditions.
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Coulter—DU800). Absorption spectra were recorded and analyzed
between 400 and 600 nm.

Gas vesicles visualization

Aliquots were harvested at various time points in Dura3 and DperA
strains and further diluted to an OD600¼0.1–0.2. Cells were then fixed
by the addition of 0.25% formaldehyde (final concentration) and
imaged with phase contrast microscopy.

Calculation of significance of enrichment

List of oxygen responsive genes was generated with principal
component analysis of oxygen microarray experiment from earlier
study (Schmid et al, 2007), which resulted in two categories of genes;
one correlated (oxic genes—105) and other anti-correlated (anoxic
genes—110) with oxygen. P-values were computed for enrichment of
both oxic and anoxic genes among all OS responsive genes based on
hyper-geometric distribution.

Motif search

Motifs conserved for various functions such as redox (CX2S), Fe–S
(CX2CX2CX3C and CX3CX2C), conserved cysteines residues of oxyR
protein (CX8C), and metal containing cysteine residues (CX2C) along
with PAS (PF00989, PF00785), GAF (PF01590), and MCP(PF00015)-
signaling domain were identified from literature (Zheng and Storz,
2000; Fomenko and Gladyshev, 2002; Paget and Buttner, 2003;
Fontecave, 2006). MatLab scripts were written to search the H.
salinarum NRC-1 proteome for matches to one or more of these
conserved motifs (Supplementary Figure S4; Supplementary Table S5).

Accession sites

Access to modeling results online @: http://baliga.systems
biology.net/drupal/content/egrin-oxidative-stress.
GEO accession number for microarray data: GSE17515 (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc¼GSE17515).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (http://www.nature.com/msb).
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