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Oxidative stress
Gisela Storz* and James A Imlay*

Much has been learnt about oxidative stress from studies of
Escherichia coli. Key regulators of the adaptive responses in
this organism are the SoxRS and OxyR transcription factors,
which induce the expression of antioxidant activities in
response to Oy~ and H,O, stress, respectively. Recently, a
variety of biochemical assays together with the characterization
of strains carrying mutations affecting the antioxidant activities
and the regulators have given general insights into the sources
of oxidative stress, the damage caused by oxidative stress,
defenses against the oxidative stress, and the mechanisms by
which the stress is perceived. These studies have also shown
that the oxidative stress responses are intimately coupled to
other regulatory networks in the cell.
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Introduction

Oxidative stress is caused by exposure to reactive oxygen
intermediates, such as superoxide anion (O,+-), hydrogen
peroxide (H,0,), and hydroxyl radical (HOe), which can
damage proteins, nucleic acids, and cell membranes.
Increasing evidence suggests that the cumulative damage
caused by reactive oxygen species contributes to numerous
diseases (reviewed in [1]). Recent studies also suggest that
the effects of these oxidants are integrally linked to the
damage caused by hypochlorous acid (HOCI), and the reac-
tive nitrogen intermediates nitric oxide (NQe), peroxynitrite
(HOONO), and nitrosothiols (RSNO). To counter oxidative
stress, cells constitutively express enzymes that detoxify the
reactive oxygen species and repair the damage caused by
them. In addition, bacterial, yeast and mammalian cells all
have adaptive responses to elevated levels of oxidative
stress, indicating that these cells sense increased levels of
reactive oxygen species and transduce the signal into
increased expression of defense activities. Escherichia coli has
been an ideal model for elucidating both the constitutive
and adaptive responses to the oxidative stress encountered
during routine aerobic growth. In this review, we focus on
oxidative stress in K. co/i but contrast what is known about
this organism with the responses in other prokaryotes.

Sources of oxidative stress

Oxidative stress is an unavoidable by-product of the aerobic
lifestyle, because O, and H,0, are formed whenever mol-
ecular oxygen chemically oxidizes electron carriers

(Figure 1a). Reduced flavoproteins in particular have been
implicated in this process in £. co/i. In exponentially growing
E. coli, both Oy+~ and H,0, are generated by the auto-oxida-
tion of components of the respiratory chain [2,3]. The flavin
of NADH dehydrogenase 11 is the primary site of electron
transfer to oxygen in the aerobic respiratory chain; contrary to
expectation, little or no O,+~ or H,0, are formed by quinone
oxidation or during oxygen reduction at the cytochrome oxi-
dases [4]. Fumarate reductase, a terminal oxidase that is
induced during anaerobic growth, reacts very rapidly with
oxygen and may confer particular oxidative stress when cells
transit from anaerobic to aerobic environments [5]. The
expression of both NADH dehydrogenase Il and fumarate
reductase is regulated in E. co/i and the enzymes are not pre-
sent in all bacteria; thus the amount of endogenous oxidative
stress will be affected by growth circumstance and will vary
from organism to organism. Aerobic E. /i synthesizes
enough superoxide dismutase to maintain the steady-state
O+~ from these endogenous sources at about 10-10 M. This
O,e~ concentration is tolerable, about half what is necessary
to diminish the activities of vulnerable enzymes and inhibit
cell growth [6]. Steady-state H,0, concentrations are higher
(10-7 to 10-6 M) [2] but are still beneath the H,0, toxicity
threshold (10-5> M) (JA Imlay, unpublished data). Thus the
defenses maintained by K. co/i are calibrated to just avoid
toxicity from endogenous oxidants.

These defenses are inadequate, however, if the rates of
intracellular O+~ and H,0, formation are accelerated.
Plants, other microorganisms and animals exploit this vul-
nerability to attack bacterial competitors. For example,
plants and some microorganisms secrete redox-cycling
antibiotics that diffuse into the competing bacteria, chemi-
cally oxidize redox enzymes and transfer the electrons to
molecular oxygen. The ecological significance of this tactic
is indicated by the presence of adaptive mechanisms in £.
¢oli to exclude these antibiotics (reviewed in [7]). In animals,
phagocytes employ NADPH oxidase, nitric oxide synthase,
and myeloperoxidase to bombard captured bacteria with
O+, NOe, HOC]I, and their chemical by-products, H,0,,
HO-., HOONO, and RSNO (Figure 1b). Although these
enzymes contribute to the killing of bacteria # vivo, it is not
yet clear which products are directly responsible for toxicity.
Unlike the other chemicals, O, (pKa = 4.8) cannot cross
membranes at neutral pH [8]. It may, however, conceivably
do so in the acidic pH of the phagolysosome. Each of these
reactive oxygen and nitrogen species is bacteriostatic or bac-
teriocidal #z vitro, but their impacts iz vive will depend upon
their ultimate concentrations, currently unknown, inside the
captured bacterium.

Mechanisms of oxidative cell damage
O,+- and H,0, have different chemical reactivities and
generate distinct types of damage inside cells (Figure 1a).



Figure 1
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Mechanisms of oxidative cell damage. (a) The
process of cell damage by endogenous
oxidants. Molecular oxygen passively diffuses
into cells and is converted to Oy~ and H,0O,
by the direct oxidation of flavoproteins,
including NADH dehydrogenase If (Ndhii).
Redox-cycling drugs, including paraquat (PQ),
accelerate the formation of these oxygen
species by catalyzing the transfer of electrons
from redox enzymes such as sulfite reductase
{SiRase) to oxygen. Og°- oxidatively destroys
iron—sulfur clusters {here, from aconitase,
Acn). The released iron can react with H,0,
to form hydroxyl radical HO+, which directly
damages DNA. H,Q), can also directly oxidize
protein cysteiny! residues. (b) Plausible
contribution of reactive oxygen and nitrogen
species to cell damage during phagocytosis.
O,*~ and NO- are generated by NADPH
oxidase and NOs synthase, respectively, on
the phagolysosomal membrane. NO- diffuses
passively into the cell where it inhibits the
function of aconitase (Acn) and cytochrome
oxidase. HOONO is formed by the
extracellular reaction of Oy*~and NO». It
diffuses into the cell and attacks cysteinyl
residues and iron—sulfur clusters. H,O,, also
formed outside the bacterial cell, oxidizes
cysteine residues and, in conjunction with free
iron, the DNA. These toxic reactions have
been demonstrated with bacterial cells in
culture but have not been tested in
phagocytosed bacteria. The white arrowheads
indicate the sources of the reactive oxygen and
nitrogen species and the black arrowheads
denote the damage that is caused.
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Mutants of E. co/ that lack cytosolic superoxide dismutase
cannot grow in air without amino acid supplements, cannot
catabolize non-fermentable carbon sources, and exhibit
high rates of spontaneous mutagenesis ([9]; reviewed in
[10]). Most of these phenotypes have been traced to a sin-
gle type of injury: the oxidative inactivation of a family of
dehydratases. These enzymes utilize exposed iron—sulfur
clusters [4Fe—45] to bind and dehydrate substrates; dehy-
dratase oxidation by O,e~ provokes cluster disintegration
and a loss of enzyme activity [11]. The auxotrophy of
superoxide dismutase mutants for branched-chain amino
acids and their inability to catabolize non-fermentable car-
bon sources reflect the inactivation of dihydroxyacid
dehydratase and of aconitase and fumarase, respectively

(reviewed in [10]). A by-product of iron—sulfur cluster
damage is that copious iron is released into the cytosol,
where it catalyzes the oxidation of DNA in conjunction
with H,0, (see below) [12,13].

Although H,0; can inhibit cell growth, the causal lesions
have not been clearly demonstrated. H,0,, however, effi-
ciently oxidizes enzyme thiols, and thus is likely to
inactivate enzymes, such as glyceraldehyde-3-phosphate
dehydrogenase, that rely upon active-site cysteine residues
for catalytic function. H,O, also reacts with adventitious
Fe2+ to form HOe, a powerful oxidant that reacts at diffu-
sion-limited rates with most biomolecules. Because iron
can localize along the phosphodiester backbone of nucleic
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Table 1

Antioxidant activities in Escherichia coli.

Gene Activity Regulators™

sodA Manganese superoxide SoxRST, ArcAB, FNR,
dismutase Fur, IHF

fumC Fumarase C SoxRSt ArcAB, 68

acnA Aconitase A SoxRS1, ArcAB, FNR,

Fur, o
zwf Gilucose-6-phosphate SoxRSt
dehydrogenase

fur Ferric uptake repressor SoxRST, OxyR

micF RNA regulator of ompF SoxRSY, OmpR, LRP

acrAB Multidrug efflux pump SoxRSt

tolC Outer membrane protein SoxRSt

for Ferredoxin reductase SoxRSt

fldA Flavodoxin SoxRSt

nfo Endonuclease IV SoxRSt

sodB Iron superoxide dismutase

sodC Copper-zinc super oS, FNR

oxide dismutase

katG Hydroperoxidase | OxyR, o®

ahpCF Alkyl hydroperoxide reductase OxyR

gorA Gilutathione reductase OxyR, ¢s

grxA Gilutaredoxin 1 OxyR

dps Non-specific DNA binding protein OxyR, o8, IHF

oxyS Regulatory RNA OxyR

katE Hydroperoxidase || oS

XthA Exonuclease Il cs

polA DNA polymerase |

recA RecA RecA, LexA

msrA Methionine sulfoxide reductase

hslO Molecular chaperone

mutM (fog)  8-hydroxyguanine endonuclease FNR {70]

hmp Flavohemoglobin MetR

*The list of regulators is undoubtably incomplete. It is likely that other
regulators will be discovered as the antioxidant genes are further
studied. TThe expression of almost all SoxRS-regulated genes is also
modulated by MarA and Rob.

acids, DNA is a particular target of HOs, and most of the
cell death that occurs upon H,0, exposure is probably due
to DNA damage [14]. A wide variety of DNA lesions are
formed (reviewed in [1]). Since some of the base damage
can result in miscoding, lesions formed by endogenous oxi-
dants may be a significant or even preponderant source of
‘spontaneous’ mutagenesis in aerobically growing cells.

The reactive nitrogen intermediates that are released by
phagocytes can potentially toxify bacteria by several routes
(Figure 1b). NOe blocks bacterial respiration i vitro by
binding the heme and/or copper sites of cytochrome oxi-
dases [15,16], and it inactivates aconitase through
iron-sulfur chemistry that is currently undefined [17].
HOONQO, formed by reaction between NOe and Oy, isan
oxidant that, like O,e, rapidly oxidizes dehydratase clus-
ters [18-20] and, like H,0,, oxidizes protein thiols [21].
HOONO can also spontaneously isomerize to an activated
form, denoted HOONO#, that is powerful enough to oxi-

dize DNA directly [22,23]. This isomerization, however, is
slow compared to the other possible fates of HOONO and
may not occur in physiological environments. RSNOs can
be produced chemically by reaction of HOONO with thiols
alone [24] and by reactionr of NOe with thiols in the pres-
ence of oxygen or metals [25]. RSNOs in turn can stimulate
thiol oxidation. Which of these injuries limits the growth
and survival of exposed bacteria is currently unsertled.

Defenses against oxidative stress

To protect against the damage caused by oxidative stress,
cells possess a number of antioxidant enzymes and repair
activities, most of which are expressed at low level Ii
normal grtw‘%mmm
mnd H,0,, the expression of many antioxidant
proteins is induced. Among the O,e-inducible activities that
are regulated by SoxRS transcription factors are manganese
superoxide dismutase (encoded by sedA), the DNA repair
enzyme endonuclease IV (#fo), and O,e-resistant isozymes
of fumarase (f#mC) and aconitase (acnA) (reviewed in [26,27];
SM Varghese, JA Imlay, unpublished data). SoxRS activation
also leads to increased levels of glucose-6-phosphate dehy-
drogenase (zwf), which increases the reducing power of the
cell, and elevated levels of the Fur repressor (f#r), which may
decrease iron uptake and therefore diminish the formation of
*OH ({26,27]; M Zheng, B Doan, TD Schneider, G Storz,
unpublished data). The @/C-8ncoded outer membrane pro-
tein, thncoded drug efflux pump, and the MicF
regulatory RINA, which represses the expression of the outer
membrane porin, all are likely to excl x-active com-
pounds that lead to increased O,o— levels [7,26,27,28). The
roles of the SoxRS-induced flavodoxin A (flZA) and ferro-
doxin/flavodoxin- NADP+ reductase (fpr) are unknown,
although they might function to maintain the reduced state
of Fe-S clusters ([26,27]; M Zheng, B Doan, 'TD Schneider,
G Storz, unpublished data). The protective roles of other
members of the SoxRS regulon, such as GTP cyclohydrolase
II (r#A) and two proteins of unknown function (i#eA and
Dgi5), are not established [29-31].

‘Two enzymes that clearly protect against O,s~ damage, but
not regulated by SoxRS, are the cytosolic iron superoxide
dismutase (soZB) and the periplasmic copper-zinc super-
oxide dismutase (so() [10,32]. It is also conceivable that
an E. co/i homolog of NifS, which was identified as a pro-
tein that provides sulfur for Fe-S cluster assembly in
Azotobacter vinelandii, might protect against O, stress, but
neither the expression nor the physiological role of this
gene has been studied extensively in E. co/i [33].

The ssion of many of the H,O5-in
regulated b nscription factor, including
hydroperoxidase 1 (catalase, #27G), the two subunits of an
alkyl hydroperoxide reductase glutaredoxin 1
glutathione reductase ¢gorA)) and the Fur repressor
u7D([26,27,34,35°]; M Zheng, B Doan, TD Schneider,
Storz, unpublished data). The phenotypes of mutations in
the OxyR-regulated gencs@ and oxy§ indicate that the
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Figure 2
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Mechanisms of SoxR and OxyR activation and deactivation.
Interestingly, the redox-active center of SoxR, which is directly or
indirectly activated by O,*~, an oxidant that damages iron—sulfur
clusters, is an iron—sulfur cluster, whereas the redox-active center of

OxyR, which is directly activated by H,O,, an oxidant that oxidizes
protein cysteinyl residues, is a redox-sensitive disulfide bond. SoxR and
OxyR also respond to NO» and RSNO, respectively.

nonspecific DNA-binding protein Dps and the OxyS regula-
tory RNA protect against mutagenesis [36,37]. Interestingly,
the crystal structure of Dps revealed that the protein is a fer-

of the AhpF subunit required for protection against perox-
ides [48°]. An important direction for future studies will be to
elucidate all of the functions of the members of the SoxRS

ritin homolog, suggesting that Dps may protect against DNA
damage by sequestering iron [38°]. The roles of three other
recently identified OxyR targets, semF (encoding a copro-
porphyrinogen III oxidase), resC (a regulator of capsular
polysaccharide synthesis genes) and /497 (encoding a protein
with homology to arylsulfatase enzymes), are not understood
[39]. OxyR negatively regulates the expression of the outer
membrane protein antigen 43 (2gn43) gene, which also does
not have an obvious role in the oxidative stress response [40].

Activities that protect against H,0,, but are not under
OxyR control include hydroperoxidase II (422E) and the
DNA repair enzymes exonuclease IIT (x#24), DNA poly-
merase 1 (po/d) and RecA [14,26,27]. Peptide methionine
sulfoxide reductase (msrA) and the molecular chaperone
Hsp33 (4s/0), whose activity is redox-regulated, also pro-
tect against oxidative stress but do not appear to be
regulated by OxyR [41,42°].

In addition to protecting against Oy and H,0,-induced
damage, the SoxRS regulon provides resistance to many dif-
ferent drugs as well as organic solvents and reactive nitrogen
species [7,43,44], and OxyR-regulated activities have been
found to confer resistance to HOCI, organic solvents, and
reactive nitrogen species [45-47,48°]. For example, the
OxyR-regulated AhpC protein protects cells against reactive
nitrogen intermediates, an AhpC activity that is independent

and OxyR regulons. Additional defense activities and regula-
tors are also likely to be identified. For example, bacterial
flavohemoglobin (47p) has been identified as an NOs-detox-
ifying enzyme [49°-51°]. /mp expression is induced by
nitrosylated compounds, and recent studies suggest that this
regulation is dependent on the MetR transcription factor [52].

Regulation of the defenses against

oxidative stress

Significant progress has been made toward elucidating the
mechanisms by which the activities of the SoxR and OxyR
transcription factors respond to O, and H,0, stress, respec-
tively (Figure 2). Regulation of the soxRS regulon occurs by
a two-stage process: the SoxR protein is first converted to an
active form that enhances sox§ transcription, and the
increased level of SoxS in turn activate expression of the reg-
ulon (reviewed in [26,27]). The constitutively expressed
SoxR protein contains two [2Fe-2S] centers per dimer. The
oxidation of the reduced [2Fe-2S]!'* form of SoxR to a
[2Fe-2S]%* form appears to be the mechanism of SoxR acti-
vation [53-55,56%,57°,58] (Figure 2). Evidence for this
mechanism comes from experiments in which the Fe-SoxR
protein reduced with dithionite was found to regain tran-
scriptional activity upon auto-oxidation [54]. Electron
paramagnetic resonance spectroscopy of whole cells also has
shown that over-produced wild-type SoxR protein is oxi-
dized within two minutes after cells are treatment with
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Oje—-generating compounds, and constitutively active
mutant SoxR proteins are predominantly in the oxidized
form even in the absence of stress [56°,57°,58]. The nature of
the signaling molecule that activates SoxR is still under
debate. The Fe-SoxR protein might be oxidized directly by
O,+= or indirectly by other molecules in the cell. Gort and
Imlay [6] observed very little induction of soxS expression in
a superoxide dismutase deficient strain suggesting that SoxR
senses some signal other than O,e-, however, others
(P Gaudu, D Touati, personal communication; SI Liocheyv,
I Fridovich, personal communication) do detect moderate
sox§ induction in superoxide dismutase deficient strains.
Liochev ¢ a/. [59] suggest that SoxR activity may be modu-
lated by alterations in NADPH or reduced flavodoxin or
ferredoxin levels, but Gaudu and Weiss [54] were unable to
observe measurable reduction of SoxR by these compounds 7
vitro. Any model for SoxR activation needs to take into account
that the protein is also activated by NOe [44]. Although the
mechanism of SoxR reduction/deactivation has not been elu-
cidated, monothiols have recently been found to promote the
disassembly, whereas dithiols promote the assembly of the
[2Fe-28] clusters [60]. Clearly, the nature of the Oye—stress
signaling molecule and the mechanisms of SoxR activation
and deactivation are important directions for future study.

The tetrameric OxyR protein exists in two forms, reduced
and oxidized, but only the oxidized form activates transcrip-
tion (Figure 2). Thus direct oxidation of OxyR by H,0, is
the mechanism whereby the cells sense oxidative stress and
induce the OxyR regulon. OxyR is also activated by reaction
with RSNO [47], but H,0; is a more effective inducer [35°].
Mutational studies suggested that OxyR oxidation involved
one, possibly two, cysteine residues [61]. Mass spectrometric
analysis and thiol-disulfide titrations showed that an
intramolecular disulfide bond is formed between residues
Cys199 and Cys208 upon OxyR oxidation [35°*]. The forma-
tion of the disulfide bond has been proposed to proceed via
a sulfenic acid intermediate, but the nature of the intermedi-
ate and the basis of the unusual reactivities of Cys199 and
Cys208 to H,0; need to be investigated further. Iz vivo and
in vitro studies showed OxyR is reduced and deactivated by
enzymatic reduction with glutaredoxin 1 [35°]. Thus,
because the expression of glutaredoxin 1 and glutathione
reductase is induced by OxyR, the response is autoregulated.

Overlap between oxidative stress response
and other regulatory networks

Several other transcriptional regulators in addition to SoxR
and OxyR modulate the expression of antioxidant genes,
illustrating the extensive connectivity between the
SoxRS/OxyR regulons and other regulatory networks. The
rpaS-encoded 65 subunit of RNA polymerase is important
for the expression of a large group of genes that are induced
when cells encounter a number of different stresses includ-
ing starvation, osmotic stress, and acid stress as well as upon
entry into stationary phase (reviewed in [62]). Starved and
stationary phase cells are intrinsically resistant to a variety
of stress conditions including high levels of H,0,, and 65

has been shown to regulate the expression of several
antioxidant genes including £azE, xthA, and sodC [32,62).
The SoxRS-regulated pgs5 gene and the OxyR-regulated
#arG, gorA and dps genes are also part of the G5 regulon [62).

The anaerobic regulators FNR and ArcAB also modulate
the of expression of the SoxRS-regulated sodA, acnA and
JumC genes, and FNR controls sodC [32,63-65]. In addi-
tion, two SoxS homologs, MarA and Rob, regulate the
expression of almost all genes in the SoxRS regulon [7].
Finally, the expression of one transcription factor, Fur, is
modulated by both SoxRS and OxyR (M Zheng, B Doan,
TD Schneider, G Storz, unpublished data). It is likely that
many more connections among the E. co/i the regulatory
networks will be discovered.

Broad distribution of regulators

In this review we have focused on the K. o/ responses to
oxidative stress. The characterization of antioxidant activi-
ties and the corresponding regulators in other prokaryotes
has pointed to similarities and also some interesting differ-
ences between K. cofi and other bacteria. Several
conclusions can be made from a survey of these studies.
First, oxidative stress responses are not exclusive to aer-
obes. Superoxide dismutase and catalase activities have
been observed in anaerobes, and the anaerobic bacterium
Bacteroides fragilis clearly has an adaptive response to H,0,
[66]. The recent isolation of a peroxide-resistant B. fragilis
mutant that overexpresses catalase, alkyl hydroperoxide
reductase subunit C and a Dps homolog should allow the
identification of the regulator of this response [66].

Second, although OxyR homologs have been characterized
in a number of bacteria, the arrangement of genes sur-
rounding oxyR is different in each organism: in E. co/i and
Salmonella typhimiurim, the oxyS gene is upstream of and on
the opposite strand to oxyR; in Mycobacterium, ahpC is
upstream of and on the opposite strand to oxyR; and in
Xanthomonas, ahpC, ahpF and oxyR are adjacent and in the
same orientation with one transcript encoding a4pC and a
second transcript encoding @4pF and oxyR [37,67,68]. Thus
while the regulators and the antioxidant genes have been
conserved, the corresponding genes have been shuffled.

Third, the presence of reactive oxygen species may be
sensed by regulators that are distinct from SoxR and OxyR.
A good example is the PerR repressor of Bacillus subtilis (69°].
PerR is a Fur-like, metal-binding protein that represses the
expression of catalase, an alkyl hydroperoxide reductase, and
Dps-like protein. It is postulated that PerR activity might be
regulated by metal-catalyzed oxidation of the protein or by a
change of the oxidation of 2 bound metal ion [69°]. The addi-
tional characterization of regulators such as PerR may bring
to light novel mechanisms of redox-sensing.

Conclusions
Further characterization of the E. co/f responses to oxida-
tive stress will undoubtedly reveal many more important



and possibly unexpected clues about cellular responses to
oxidative stress. Another important direction for future
work will be to examine oxidative stress responses of other
prokaryotes especially under special circumstances, such
as the oxygenation of obligate anaerobes and the oxidative
assault upon bacteria in the phagolysosome.
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