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A biologically realistic method was used to simulate evolutionary trees. The method uses a real DNA coding sequence as
the starting point, simulates mutation according to the mutational spectrum of Escherichia coli—including base substi-
tutions, insertions, and deletions—and separates the processes of mutation and selection. Trees of 8, 16, 32, and 64 taxa
were simulated with average branch lengths of 50, 100, 150, 200, and 250 changes per branch. The resulting sequences
were aligned with ClustalX, and trees were estimated by Neighbor Joining, Parsimony, Maximum Likelihood, and Bayes-
ian methods from both DNA sequences and the corresponding protein sequences. The estimated trees were compared with
the true trees, and both topological and branch length accuracies were scored. Over the variety of conditions tested, Bayes-
ian trees estimated from DNA sequences that had been aligned according to the alignment of the corresponding protein
sequences were the most accurate, followed by Maximum Likelihood trees estimated from DNA sequences and Parsimony
trees estimated from protein sequences.

Introduction

Phylogenetic analyses are now routinely used by non-
systematists as tools for understanding a variety of biological
processes. Applications of phylogenetic methods include
understanding genome organization, epidemiology, predict-
ing protein functions, and deciding which genes to analyze in
comparative studies. Typically, such users are less interested
in understanding the historical relationships among species
than they are in understanding the relationships among the
sequences of the genes and proteins that they subject to phy-
logenetic analysis. As they become aware of the variety of
phylogenetic methods that are available, they are faced with
the difficult problem of choosing the most appropriate
method for their purposes. Users are interested in the relative
accuracies of the methods, as well as in the trade-offs among
accuracy, computational speed, and ease of use of the pro-
grams that implement the various methods. Although there
is a considerable literature on the comparison of various
methods, there is little in that literature that provides clear
guidance to the casual user of phylogenetic analysis.

Comparison of the various methods requires the gen-
eration of a data set from a known or true tree, applying the
various phylogenetic methods to that data set, and then com-
paring the estimated trees with the true tree to determine the
accuracy with which each method estimates the tree.

The most reliable true trees come from experimental
evolution systems in which a population of organisms, typ-
ically bacteriophage, is periodically divided into lineages
(Hillis et al. 1992; Hillis, Huelsenbeck, and Cunningham
1994; Bull et al. 1997). The shape of the phylogeny, i.e.,
the order of branching events and the time between branches,
is determined by the experimenter, but the evolutionary
changes depend upon the properties of the experimental
system itself. The number and nature of the changes is deter-
mined from the sequences of the gene(s) of interest at each
branch point. Such experimental studies are resource inten-

sive, and most are limited to a small number of lineages.

The alternative is computer simulations of sequence
evolution togenerate true trees.Typicallya randomsequence
isevolvedalongamodel treebyrandomsubstitutionsaccord-
ing tosomeevolutionarymodel (Li1997), suchas theKimura
Two Parameter model (Kimura 1980). In some cases the
model tree involves a constant rate of evolution, and in others
the rate is variable, but even in the case of variable rates the
variation is typicallyaccording toasimplepattern(Saitouand
Imanishi 1989). However, in at least one study (Kuhner and
Felsenstein 1994) the model trees were randomly con-
structed, resulting in both a variety of different topologies
and variable evolutionary rates so that the true trees were
comparable to those seen in real data.

Those simulations suffer a common set of problems.
They typically consider only a small number (4–32) of taxa.
They may be biased toward one method or another by the
evolutionary model that is chosen. Whatever evolutionary
model is used, it certainly oversimplifies the reality of the
substitution process. Indeed, modeling evolution as a pro-
cess of substitution confounds two distinct processes, muta-
tion and selection, whose outcome is the real substitution
pattern. Mutation is a complex process that ultimately gen-
erates a ‘‘spontaneous mutational spectrum,’’ the relative
proportions of the various kinds of mutations (base substi-
tutions, insertions, and deletions) that occur. The basis of
the base substitution process is fairly well understood: it
is the result of DNA polymerase incorporation errors com-
bined with the failures of the various repair systems to elim-
inate all of those errors (Schaaper and Dunn 1991). The
basis of insertion and deletion mutations is much less well
understood. About half of deletions can be attributed to
local repeat motifs, but the basis of the remaining half is
not well understood. Once a mutation has occurred selec-
tion and drift combine to determine which mutations are
fixed into populations. Because most mutations that result
in amino acid substitutions are deleterious, and because of
the redundant nature of the genetic code, the mutation spec-
trum can be very different from the substitution spectrum.

Probably the most serious common failing of most
computer simulated trees is their failure to incorporate dele-
tions and insertions during their evolution. The resulting
terminal-taxon sequences require no alignment prior to
using them as the data to which various phylogenetic
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methods will be applied for comparison. In reality, se-
quences must be aligned, and the qualities of the resulting
trees depend strongly on the qualities of the alignments. The
failure to require the alignment step considerably reduces
the confidence we can have in using the resulting compar-
isons of methods as a guide to making decisions about
which methods to use with real DNA. I am aware of only
one program, ROSE (Stoye, Evers, and Meyer 1998), that
incorporates insertions and deletions during the simulated
evolution of sequences.

Once the data set is created by simulation, the phylo-
genetic methods to be compared are applied to estimate
trees, and the estimated trees are compared with the true
tree to produce some measure of the accuracy of the method.
Most studies consider accuracy only in terms of the topol-
ogies of the estimated trees, and the most common measure
of accuracy is the percent of the time among replicates that
the topology of the estimated tree is identical to the topol-
ogy of the true tree. That is not a very useful measure be-
cause it yields no indication of how close the typical
estimated tree is to the true tree. If the estimated tree differs
from the true tree by a single branch or by many branches it
is scored identically as non-identical. In fact, we are less
interested in how often an estimated tree is perfect among
1000 replicates than we are in how good is the estimated
tree likely to be.

There is a notable exception to that measure of accu-
racy. Kuhner and Felsenstein (Kuhner and Felsenstein
1994) measured quality of the estimated trees, not just the
quantity that were perfect. Theirs was also the only study
I am aware of that included a measure of the accuracy of
branch lengths. While most systematists are primarily inter-
ested in accuracy of topologies, others are equally interested
in the accuracies of branch lengths. Finally, theirs is also the
only study that I am aware of that considered the relative
speeds of the various methods.

The study reported here has several purposes: first, to
develop a biologically realistic method of sequence evolu-
tion simulation, a method that separates mutation from
selection and that incorporates insertions and deletions; sec-
ond, to develop a method of comparing estimated trees with
a true tree that scores the quality of the topologies estimated
for the trees rather than the quantity of trees that are perfect,
and that scores the quality of the estimated branch lengths;
third, to apply those methods to comparing the accuracies of
trees based on protein sequences with those based on DNA
sequences when using Neighbor Joining (NJ), Maximum
Parsimony (MP),Maximum Likelihood (ML), and the Bayes-
ian method to estimate those trees.

Methods
Simulation of DNA Sequence Evolution

Sequence evolution was performed by the program
EvolveAGene 2.2 (Hall 2004e), written in C and executed
on a Macintosh G4 computer. Details of the program are
discussed in the Results. The simulations were all initiated
by the coding region of XisC, a 1494 base pair hupL ele-
ment site-specific recombinase from an Anabena species,
GenBank Accession number U08014, from which the ter-
mination codon had been removed.

Sequence Alignments

Protein sequences were aligned using ClustalX 1.83
(Thompson et al. 1997) with pairwise gap penalties of
35 for gap opening and 0.75 for gap extension, and multiple
alignment penalties of 15 for gap opening and 0.3 for gap
extension.

DNA sequences were either aligned ‘‘directly’’ with
ClustalX using the default gap opening penalties of 15
and gap extension penalties of 6.66 for both the pairwise
and multiple alignment stages, or they were aligned, as indi-
cated, according to the corresponding protein sequence
alignment using CodonAlign 2.0 (Hall 2004a) as previ-
ously described (Hall 2004b). In neither case were align-
ments optimized either by modifying global gap penalties
or by modifying local gap penalties for selected ranges of
residues.

ClustalX calculates a quality score (Q-score) for each
site in the alignment and displays those scores as a histogram
below the alignment pane. The Q-scores for alignments
were saved to text files and the program TuneClustalX
1.01 (Hall 2004c) was used to calculate the average Q-score
as a measure of the overall quality of the alignments.

Estimation of Phylogenetic Trees

Neighbor Joining, Parsimony, and Maximum Likeli-
hood trees were estimated using PAUP*4.0b10 (Swofford
2000) Bayesian trees were estimated using MrBayes 3.0b4
(Huelsenbeck and Ronquist 2001).

Tree Comparisons

Estimated trees were compared with their correspond-
ing true trees by the program CompareTrees 1.01, as de-
scribed in detail in the Results. CompareTrees was written
in C and executed on a Macintosh G4 computer. Details of
the program are also discussed in the Results.

Computer Programs

The programs CodonAlign 2.0, TuneClustalX, Evol-
veAGene, and CompareTrees are available from the author
on request. CodonAlign 2.0 is available for Macintosh and
Windows platforms, and the source code is available to be
compiled for Unix machines. The other programs are avail-
able only for the Macintosh platform.

Results
The Simulation Process

The EvolveAGene program was designed to generate
phylogenetic trees by simulating the evolution of sequences
in a biologically realistic fashion. The program takes as its
input a real DNA coding sequence. That sequence forms the
root node of the tree. The user chooses the number of taxa
(external nodes) on the tree, either 2, 4, 8, 16, 32, 64, or 128
taxa. The present study was limited to a maximum of 64
taxa. The user chooses the average length of the branches
on the tree, where the length is defined as the number of
sequence changes between nodes, i.e., the number of accep-
ted mutations.

Accuracies of Phylogenetic Tree Algorithms 793

 at C
ollege of Science Z

hejiang U
niversity on D

ecem
ber 28, 2013

http://m
be.oxfordjournals.org/

D
ow

nloaded from
 

http://mbe.oxfordjournals.org/
http://mbe.oxfordjournals.org/


The program creates a strictly bifurcating, cladistically
symmetric, tree starting from the root. For each branch, the
length is a random number between 0 and twice the average
branch length defined by the user. This process means that
the evolutionary rate varies throughout the tree. Figure 1
shows the naming convention for the nodes, and figure 2
shows a typical tree of 64 taxa with an average of 250 chan-
ges per branch. The arrows in figure 2 illustrate how the
strictly bifurcating tree can include near-trichotomies that
result from near-zero branch lengths.

Once the tree is established, the program evolves the
sequences along the tree, starting from the input root seq-
uence. The user determines the probability that an amino acid
replacement mutation will be accepted, and the probabilities
that insertion and deletion mutations will be accepted.

At each attempt to change the sequence, a random site
in the DNA sequence is chosen and a mutation of that site
is attempted according to the mutational spectrum of
Escherichia coli.

A mutational spectrum shows the proportions of the
various kinds of spontaneous mutations in a gene—i.e.,
base substitutions; insertions; and deletions; among base
substitutions, the proportions of the six kinds of possible
base changes; and among insertions and deletions, the pro-
portions of indels of different lengths. Note that these are
not the proportions of substitutions that are found among
existing genes in the populations; they are the proportions
of spontaneous mutations that are experimentally deter-
mined to occur in target genes. The most reliable studies
of mutational spectra involve determining loss-of-function
mutations in genes where loss of function is easily selected.
The two most thoroughly studied target genes are lacI
(Glickman, Burns, and Fix 1986) and ebgR (Hall 1999).
Taken together, those studies show that 61% of spontane-
ous mutations are base substitutions, 33% are deletions, and
6% are insertions. Eight percent of base substitutions are
AT to GC, 40% are GC to AT, 29% are GC to TA, 4%
are GC to CG, 10% are AT to CG, and 10% are AT to

FIG. 1.—Node-naming convention for simulated trees.
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TA; thus, transitions occur almost as frequently (48%) as
transversions (52%). This is very different from typical sub-
stitution spectra where transitions outnumber transversions
by about 1.5:1 (Li 1997). The length distributions of inser-
tions and deletions do not form a simple pattern, in part
because the number of indels observed in those studies
was small. Although we know a good deal about the molec-
ular basis of the base substitution spectra, we know rela-
tively little about the molecular basis of indels beyond
the fact that about 50% of indels are associated with repeat
sequences (Schaaper, Danforth, and Glickman 1986).
About 50.9% of deletions involve a single base, with all
other lengths observed being 1%-3% each. For the purpose
of the simulation, I have taken all deletion lengths .1 base
as having equal probabilities of 2.3%, with deletions limited
to a maximum of 23 bases. Similarly, insertions of 1 base
have a probability of 52.6%; two-base insertions, a proba-
bility of 9.3%; and lengths .2, probabilities of 4.8% up to a
maximum of 11 bases.

When a random site is chosen by EvolveAGene it is
mutated according to the E. coli spectrum described above.
If themutation isan indelwhose length isnotan integermulti-

ple of three, the mutation is not accepted on the grounds that
such mutations result in frameshifts that are almost always
strongly selected against because they result in complete loss
of protein function. If the indel is an integer multiple of three,
it is acceptedor rejectedaccording to theprobabilityspecified
by the user. When a mutation is not accepted, the sequence
remains unchanged, another random site is chosen, and
another attempt to introduce a mutation is made. If the muta-
tion is a base substitution and the encoded amino acid is
unchanged—i.e., the mutation is silent—the mutation is
accepted and incorporated into the sequence. If the mutation
results in a nonsense (chain termination) codon, the mutation
is rejected. If the amino acid is changed to a different amino
acid—i.e., the mutation was nonsynonymous—the mutation
is accepted or rejected according to the probability specified
by the user. As a result, the probability of accepting an amino
acid substitution is equivalent to the dN/dS ratio across the
tree. That equivalence has been confirmed for several trees
by Yang’s Codeml program of the PAML suite (Yang
1997) (results not shown).

When thenumberofacceptedmutations is that specified
by the length of the current branch, the sequence is saved

FIG. 2.—Phylogram of a typical true tree of 64 taxa with an average of 250 changes (accepted mutations) per branch.
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according to the naming convention in figure 1. Internal node
sequences are saved to a separate file from terminal node
(taxon) sequences. Both internal node and taxon sequences
are translated and saved to separate protein sequence files.
Files containing the true tree with branch lengths in numbers
of DNA sequence changes and with branch lengths in the
number of protein sequence changes are saved. Multiple
changes at the same site are each counted in those branch
lengths.

The result of the simulation is a biologically realistic
tree that is initiated by a real coding sequence, a tree in
which mutation and selection are separate processes, a tree
that is based on the spontaneous mutation spectrum of a real
organism, and a tree that includes both insertion and dele-
tion mutations.

The Alignment Process

Before being used to estimate phylogenetic trees, real
sequences must be aligned, and it is a truism that the quality
of a tree is no better than the quality of the alignment used to
estimate that tree (Hall 2004b).

Taxon protein sequences were aligned with ClustalX
1.83 as described in Methods, and the average Quality
Scores were calculated.

Two methods were used to align the DNA sequences.
DNA sequences were ‘‘directly’’ aligned using ClustalX
1.83asdescribed inMethods.Treesbasedon those alignments
are specified in tables 1–4 as ‘‘DNA-DD.’’ DNA sequences
were also aligned according to the protein sequence align-
ments using CodonAlign 2.0 (Hall 2004b). Trees
based on those alignments are specified as ‘‘DNA-CA.’’

The rationale for CodonAligned DNA sequences is that
alignment algorithms introduce gaps that maximize the
alignment score. Those gaps are intended to represent his-
torical insertions and deletions during the phylogenetic his-
tories of the sequences. Often, gaps that maximize alignment
scores result in frameshifts when the gapped sequences are
translated; thus the translated aligned sequences bear little
resemblance to the real protein sequences. Had such frame
shifting gaps actually arisen during the history of a protein,
the resulting alleles would almost certainly have been elim-
inated by purifying selection.

Tree Comparisons

Phylogenetic trees were estimated from protein se-
quences, from directly aligned DNA sequences (DNA-DD),
and from CodonAligned DNA sequences (DNA-CA) de-
rived from each data set. Aside from comparing the various
phylogenetic methods, one of the major purposes of these
studies was to determine whether trees estimated from DNA
sequences are more or less accurate than trees estimated from
the corresponding protein sequences. Another purpose was to
determine whether trees estimated from CodonAligned DNA
sequences are, in fact, more accurate than trees estimated from
directly aligned DNA sequences.

The estimated trees were compared with the True
Trees with the program CompareTrees (Hall 2004d). Com-
pareTrees calculates three scores for each comparison: a
topology score, a branch length score, and a tree score.
The topology score is the fraction of clades that are present
in the True Tree that are also present in the estimated tree.
The branch length score is determined by calculating, for

Table 1
Tree Scores a

Average
Branch
Length

Mean Protein
Alignment
Q-Score

NJ
Protein

Parsimony
Protein

Bayesian
Protein

NJ
DNA-DD

Parsimony
DNA-DD

ML
DNA-DD

Bayesian
DNA-DD

NJ
DNA-CA

Parsimony
DNA-CA

ML
DNA-CA

Bayesian
DNA-CA

Mean DNA
Alignment
Q Score

Eight taxa

50 74.81 0.893 0.881 0.837 0.782 0.822 0.936 0.795 0.793 0.836 0.934 0.789 83.29
100 63.20 0.817 0.904 0.904 0.677 0.689 0.876 0.877 0.688 0.702 0.916 0.914 75.16
150 52.71 0.746 0.808 0.847 0.516 0.606 0.827 0.828 0.534 0.622 0.914 0.776 68.98
200 41.98 0.806 0.817 0.723 0.567 0.588 0.786 0.789 0.573 0.590 0.896 0.778 64.64
250 38.10 0.662 0.726 0.836 0.459 0.504 0.684 0.688 0.454 0.493 0.820 0.663 59.72

Sixteen taxa

50 66.45 0.867 0.912 0.879 0.728 0.740 0.848 0.842 0.744 0.751 0.839 0.831 78.05
100 44.79 0.782 0.827 0.777 0.539 0.647 0.784 0.783 0.541 0.658 0.915 0.916 62.61
150 43.85 0.823 0.809 0.856 0.605 0.649 0.824 0.825 0.617 0.647 0.881 0.881 62.01
200 32.86 0.684 0.782 0.802 0.473 0.518 0.743 0.743 0.474 0.533 0.746 0.823 55.96
250 20.10 0.641 0.750 0.556 0.418 0.504 0.736 0.739 0.475 0.505 0.718 0.714 47.33

Thirty-two taxa

50 57.22 0.827 0.879 0.823 0.715 0.793 0.853 0.846 0.745 0.791 0.913 0.903 71.04
100 45.78 0.779 0.843 0.843 0.563 0.665 0.793 0.788 0.575 0.670 0.873 0.878 63.61
150 29.22 0.767 0.823 0.732 0.535 0.626 0.762 0.760 0.591 0.618 0.814 0.809 52.99
200 18.91 0.640 0.753 0.655 0.473 0.522 0.805 0.805 0.468 0.557 0.793 0.761 46.18
250 14.09 0.529 0.702 0.409 0.380 0.457 0.742 0.745 0.372 0.430 0.677 0.670 42.08

Sixty-four taxa

50 50.82 0.857 0.868 0.803 0.697 0.822 0.841 0.845 0.734 0.814 0.852 0.855 66.37
100 33.20 0.153 0.835 0.728 0.585 0.711 0.813 0.821 0.587 0.703 0.845 0.852 55.44
150 18.22 0.722 0.761 0.597 0.483 0.578 0.649 0.660 0.540 0.582 0.792 0.800 44.22
200 12.40 0.674 0.758 0.521 0.494 0.549 0.739 0.764 0.483 0.557 0.705 0.721 38.76
250 11.416 0.5718 0.6835 0.4592 0.4238 0.4785 0.6694 0.697 0.438 0.502 0.714 0.736 37.97

a The input (root) sequence was XisC, 1494 bp. Probabilities of accepting non-synonymous substitutions, insertions and deletions were all 0.1.
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each branch that is present in both the True Tree and the
estimated tree, the absolute value of the difference in branch
lengths, and dividing that by the length of the branch in the
True Tree. That number is subtracted from 1 to produce the
score for that branch, and those scores are averaged to pro-
duce the branch length score for the tree. The rationale for
using the absolute value of the difference in branch lengths
is that it is no better to overestimate than to underestimate
the length of a branch, and that averaging signed branch
length differences would result in positive differences can-
celing negative differences, thereby overestimating the
average branch length score. The tree score is the product
of the topology score and the branch length score; thus it
weights topology and branch lengths equally in determin-
ing the accuracy of a tree. The tables show both topology
scores and tree scores, and readers who would weight those
factors differently may use those scores to calculate the
branch length scores and differently weighted tree scores.

Tables 1 and 2 show the results for simulated trees of
8, 16, 32, and 64 taxa with an average of 50, 100, 150, 200,
and 250 accepted mutations per branch. For each number of
taxa, as the average branch lengths increase, the Q-scores of
the alignments decrease. Similarly, for each set of branch
lengths, as the number of taxa increases, the Quality Scores
decrease. Although the Q-scores can be maximized by opti-
mizing the gap penalties, in large part, the Q-scores reflect
the diversity of the sequences. It is therefore not surprising
to see that, in general, for each phylogenetic method exam-
ined, as the Q-scores decrease accuracies of the trees, as
represented by the tree scores, also tend to decrease (table
1). The topology scores also decrease slightly with decreas-

ing Q-scores (table 2), but the effect is slight and not sig-
nificant. Tables 3 and 4 show the results for five replicate
data sets for the most extreme set of conditions, 64 taxa and
an average of 250 accepted mutations per branch. Tables 3
and 4 also show that under identical simulation conditions
there is considerable variation from one run to the next. The
standard errors of the scores allow us to judge how seriously
to take differences in tables 1 and 2.

Tree scores for directly aligned DNA sequences
(DNA-DD) in table 1 were compared with those of Codon
Aligned DNA sequences (DNA-CA) by a paired t-test. The
tree scores for DNA-CA sequences averaged 0.021 higher
than the tree scores for DNA-DD sequences. The difference
is highly significant (P , 0.001). The same comparison of
topology scores (table 2) showed that CodonAligned DNA
gave slightly higher (0.0073) topology scores with P 5
0.02. It is reasonable to conclude that it is preferable to align
DNA coding sequences according to the alignment of their
corresponding protein sequences.

For both CodonAligned DNA and for protein sequences
Neighbor-Joining trees typically have the lowest tree score,
and ML trees estimated from CodonAligned DNA (DNA-
CA) have the highest scores. Just below the tree scores
for ML trees for DNA-CA are Bayesian DNA-CA trees and
parsimony trees of protein sequences. Each is significantly
worse than ML of DNA-CA (P5 0.05 andP5 0.03, respec-
tively), but they are not significantly different from each other.
The superiority of ML trees based on DNA-CA disappears for
the 64-taxon set, for which Bayesian DNA-CA trees are sig-
nificantly better than ML DNA-CA trees, but not significantly
different from parsimony protein trees. The major conclusion

Table 2
Topology Scores a

Average
Branch
Length

Mean Protein
Alignment
Q-Score

NJ
Protein

Parsimony
Protein

Bayesian
Protein

NJ
DNA-DD

Parsimony
DNA-DD

ML
DNA-DD

Bayesian
DNA-DD

NJ
DNA-CA

Parsimony
DNA-CA

ML
DNA-CA

Bayesian
DNA-CA

Mean DNA
Alignment
Q Score

Eight taxa

50 74.81 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 83.29
100 63.20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 75.16
150 52.71 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 68.98
200 41.98 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 64.64
250 38.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 59.72

Sixteen taxa

50 66.45 1.000 1.000 1.000 1.000 0.929 0.929 0.929 1.000 0.929 0.929 0.929 78.05
100 44.79 1.000 0.952 0.929 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 62.61
150 43.85 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 62.01
200 32.86 0.929 1.000 1.000 0.929 0.929 0.929 0.929 0.929 1.000 0.929 1.000 55.959
250 20.10 1.000 1.000 0.929 0.857 0.929 0.929 0.929 1.000 0.929 0.929 0.929 47.330

Thirty-two taxa

50 57.22 0.967 0.978 0.967 1.000 0.983 1.000 1.000 1.000 0.967 1.000 1.000 71.04
100 45.78 1.000 0.978 0.967 1.000 0.933 1.000 1.000 1.000 0.967 0.967 1.000 63.61
150 29.22 1.000 1.000 1.000 0.967 0.950 1.000 1.000 1.000 0.933 0.967 0.967 52.99
200 18.91 0.933 0.967 0.967 0.933 0.917 0.967 0.967 0.933 0.967 1.000 0.967 46.18
250 14.09 0.933 0.950 0.967 0.967 1.000 1.000 1.000 0.967 0.933 0.967 0.967 42.08

Sixty-four taxa

50 50.82 0.984 0.976 0.984 0.984 1.000 0.984 1.000 1.000 1.000 0.967 0.984 66.37
100 33.20 0.968 0.973 0.968 0.968 0.984 0.968 0.984 0.968 0.984 0.968 0.984 55.44
150 18.22 1.000 0.976 0.984 0.952 0.919 0.936 0.952 1.000 0.979 0.968 0.984 44.22
200 12.40 0.984 0.981 0.968 0.968 0.968 0.968 0.984 0.952 0.968 0.968 0.984 38.76
250 11.42 0.919 0.944 0.919 0.887 0.919 0.871 0.887 0.936 0.952 0.968 0.984 37.97

a The input (root) sequence was XisC, 1,494 bp. Probabilities of accepting nonsynonymous substitutions, insertions, and deletions were all 0.1.
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Table 3
Reproducibility of Tree Scores a

Replicate

Mean
Protein

Alignment
Q Score

NJ
Protein

Parsimony
Protein

Bayesian
Protein

NJ
DNA-DD

Parsimony
DNA-DD

ML
DNA-DD

Bayesian
DNA-DD

Mean
DNA

Alignment
Q Score

NJ
DNA-CA

Parsimony
DNA-CA

ML
DNA-CA

Bayesian
DNA-CA

NJ
K2Pb

DNA-CA

Weighted
Parsimony

Tv 5 2
DNA-CA

1 12.9 0.590 0.714 0.585 0.438 0.493 0.716 0.728 40.5 0.419 0.493 0.735 0.764 0.634 0.708
2 12.2 0.576 0.633 0.428 0.413 0.447 0.677 0.694 39.6 0.402 0.451 0.675 0.685 0.586 0.601
3 11.4 0.572 0.684 0.459 0.424 0.479 0.669 0.697 38.0 0.438 0.502 0.714 0.736 0.640 0.683
4 11.4 0.594 0.656 0.444 0.407 0.428 0.597 0.620 38.2 0.424 0.472 0.716 0.739 0.659 0.636
5 13.9 0.600 0.642 0.420 0.455 0.477 0.693 0.718 39.4 0.433 0.487 0.669 0.678 0.630 0.642
Mean 6

S.E.
12.36 6
0.48

0.586 6
0.005

0.666 6
0.015

0.467 6
0.030

0.427 6
0.009

0.465 6
0.012

0.670 6
0.020

0.691 6
0.019

39.1 6
1.3

0.423 6
0.006

0.481 6
0.009

0.702 6
0.035

0.720 6
0.017

0.630 6
0.012

0.654 6
0.019

a Sixty-four taxa, branch lengths were an average of 250 accepted mutations. Probabilities of accepting nonsynonymous substitutions, insertions, and deletions were all 0.1.
b K2P: Kimura two-parameter model of nucleotide substitution.

Table 4
Reproducibility of Topology Scores a

Replicate

Mean
Protein

Alignment
Q Score NJ Protein

Parsimony
Protein

Bayesian
Protein

NJ
DNA-DD

Parsimony
DNA-DD

ML
DNA-DD

Bayesian
DNA-DD

Mean DNA
Alignment
Q Score

NJ
DNA-CA

Parsimony
DNA-CA

ML
DNA-CA

Bayesian
DNA-CA

NJ K2Pb

DNA-CA

Weighted
Parsimony

Tv52
DNA-CA

1 12.90 0.968 0.976 1.000 0.967 0.952 0.936 0.936 40.5 0.952 0.952 0.984 1.000 0.951 0.952
2 12.18 0.887 0.858 0.887 0.903 0.903 0.903 0.919 39.6 0.887 0.887 0.903 0.919 0.887 0.855
3 11.42 0.919 0.944 0.919 0.887 0.919 0.871 0.887 38.0 0.936 0.952 0.968 0.984 0.936 0.952
4 11.39 0.936 0.911 0.968 0.855 0.839 0.823 0.839 38.2 0.936 0.936 0.952 0.968 0.952 0.936
5 13.92 0.903 0.914 0.952 0.936 0.909 0.936 0.952 39.4 0.903 0.919 0.936 0.936 0.936 0.919
Mean 6

S.E.
12.36 6
0.48

0.923 6
0.014

0.920 6
.020

0.945 6
.019

0.909 6
.019

0.904 6
.018

0.894 6
.021

0.906 6
.020

39.1 6
0.5

0.923 6
.012

0.929 6
.012

0.948 6
.014

0.961 6
.015

0.932 6
0.012

0.923 6
0.018

a Sixty-four taxa, branch lengths were an average of 250 accepted mutations. Probabilities of accepting nonsynonymous substitutions, insertions, and deletions were all 0.1.
b K2P: Kimura two-parameter model of nucleotide substitution.
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from the data in tables 1 and 2 is that the most reliable method,
that which yields the most accurate trees overall, is the max-
imum likelihood method using CodonAligned DNA.

The tree-estimation methods used for tables 1 and 2
were all implemented with the default settings of the respec-
tive methods because those are the settings that are most
likely to be employed by a casual user who wants to con-
struct phylogenetic trees from molecular data. Having
established that the most demanding conditions tested were
64 taxa with average branch lengths of 250 accepted muta-
tions, and that directly aligned DNA sequences consistently
produce less accurate trees than do CodonAligned DNA or
protein sequences, it appeared reasonable to consider some
variations of the basic methods. Because CodonAligned
DNA sequences are clearly preferable to directly aligned
DNA sequences, only protein sequences and Codon
Aligned DNA sequences were considered. Neighbor Join-
ing for DNA-CA sequences was extended to include the
Kimura two-parameter model of nucleotide substitution
(Kimura 1980), and Parsimony for DNA-CA sequences
was extended to include Weighted Parsimony (Maddison
and Maddison 1992) with the transversion weight penalties
set at 2. The additional methods were applied to the five
replicate data sets of 64 taxa and average branch lengths
of 250 accepted mutations (tables 3 and 4, last two col-
umns). Paired t-tests showed that, in terms of tree scores
(table 3), NJ with the Kimura two-parameter model of
nucleotide substitution is significantly more accurate
(P , 0.0001) than NJ with uncorrected distance, and that
weighted parsimony is significantly more accurate than
unweighted parsimony (P , 0.0001). This is consistent
with earlier findings that Weighted Parsimony is more accu-
rate than unweighted parsimony (Hillis, Huelsenbeck, and
Cunningham 1994). The topology scores (table 4), on the
other hand, were not significantly different from each other.

Those conditions push the limits for producing reliable
alignments. Q-scores of the protein alignments averaged
only 12.36, and pairwise alignments of the most divergent
taxa, those whose common ancestor is the root, showed that
the percent identical amino acids (%ID) were in the range of
20% to 30% identity. In that so-called twilight zone of evo-
lutionary relatedness (Doolittle 1981), ClustalX aligns, on
average, 80% of residues correctly (Thompson, Plewniak,
and Poch 1999). Below 10% ID, it aligns ,50% of residues
correctly (Thompson, Plewniak, and Poch 1999).

In terms of topology, for the data in table 4, all of the
methods performed well with topology scores .0.92, but
the Bayesian DNA-CA method performed better than all
other methods (P , 0.05 in all paired t-tests).

In terms of tree scores, for the data in table 3, the Bayes-
ian DNA-CA method performed better than all other meth-
ods (P , 0.01 in all paired t-tests).

As pointed out above, the conditions under which evo-
lution of these sequences have been simulated result in
sequence sets that push the limits of the ClustalX alignment
algorithm. Those conditions should become less stringent if
fewer deletion and insertion mutations are accepted.
Accordingly, a set of five replicate data sets was created,
in which the probability of accepting an insertion or dele-
tion was reduced from 0.1 to 0.025. Thus, the conditions
were identical to those in tables 3 and 4 except for the lower

probability of accepting an indel mutation. Table 5 shows
that those conditions increase the average Q-score almost
twofold. Under those less stringent conditions, all of the
topology scores were improved, and all of the tree scores
were improved (compare table 5 with tables 3 and 4). In
terms of the tree scores, the most dramatic differences
between the less stringent and the more stringent conditions
were that, under the less stringent conditions, Bayesian pro-
tein trees and Bayesian DNA-CA trees were significantly
more accurate than trees constructed by any other method,
but they were not significantly different from each other.
The accuracy of Bayesian protein trees appears to be par-
ticularly sensitive to the quality of the alignments. In terms
of the topology scores, the five most accurate methods were
not significantly different from one another.

Discussion

A biologically realistic method was used to simulate
evolutionary trees. In all cases the root (input) sequence
was a real DNA coding sequence. The mutation process
was simulated based on the spontaneous mutational spec-
trum of a real organism, E. coli. The mutation process
included insertions and deletions, but the spectrum of indel
lengths was somewhat arbitrary, owing to the paucity of
data on spontaneous deletions in E. coli. The selection pro-
cess was modeled by assuming that all frameshift and all
nonsense mutations were strongly deleterious. The proba-
bility of accepting a nonsynonymous mutation, i.e., the dN/
dS ratio, was set to 0.1, a value that is similar to the dN/dS
ratio estimated for the Drosophila adh gene (Yang et al.
2000). The probability of accepting an indel mutation
was set to 0.1 (tables 1 and 4) or to 0.025 (table 5). Those
values are somewhat arbitrary as we have essentially no in-
formation on the distribution of the selective consequences
of indel mutations. Simulations of 64 taxa under those con-
ditions result in true trees that resemble deep phylogenies
based on similar numbers of taxa (see fig. 2).

This approach to the simulation of sequence evolution
requires, as does reality, that the sequences are aligned with
a multiple alignment program such as ClustalX. The aver-
age Q-scores from alignment of the protein sequences are
quite similar to those from actual deep-phylogeny data
sets. Average Q-scores for phylogenies of some antibiotic
resistance genes, where the roots of those phylogenies are
older than about one billion years ago, include: the class A
b-lactamases (Hall and Barlow 2004), average Q-score 5
18.6; the class D b-lactamases (Barlow and Hall 2002),
average Q-score 5 22.8, the class B1 1 B2 metallo-b-
lactamases (Hall, Salipante, and Barlow 2004), average
Q-score 5 14.8, and the class B3 metallo-b-lactamases
(Hall, Salipante, and Barlow 2004), average Q-score 5
11.9.Thesimilaritiesof theaverageQ-scoresof thesimulated
tree sequence alignments and the average Q-scores of real
alignments supports the contention that the simulations are
biologically realistic.

The program ROSE (Stoye, Evers, and Meyer 1998),
which also simulates sequence evolution with indels,
deserves some comment. Like EvolveAGene, ROSE can
be initiated with a root sequence chosen by the user. ROSE
evolves DNA sequences according to one of several models
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(JC [Jukes and Cantor 1969], K2P [Kimura 1980], HKY
[Hasegawa, Kishino, and Yano 1985], or F81 [Felsenstein
1981]) while including insertions or deletions at rates speci-
fied by the user. Unlike EvolveAGene, ROSE does not sep-
arate the processes of mutation and selection, nor does it use
an experimentally determined mutational spectrum to set
the probabilities of the different types of mutation. One
of the primary motivations for the present study was to
compare the relative accuracies of trees based on DNA cod-
ing sequences and trees based on their corresponding pro-
tein sequences. Those comparisons require translating the
simulated DNA coding sequences in order to obtain the cor-
responding protein sequences. Because ROSE can also use
a protein sequence as its root, and because it can directly
evolve that protein sequence, ROSE does not exclude either
frameshifts or nonsense mutations during the process of
evolving DNA sequences. As a result translation of frame-
shifted ROSE sequences produces meaningless protein
sequences that do not align. In reality, of course, such frame-
shifted genes are eliminated by purifying selection. Because
ROSE allows frameshifted sequences to persist it was not
suitable for use in this study.

One of the questions this study was designed to
address was whether alignment of coding sequences accor-
ding to alignment of the corresponding protein sequences
produces more accurate trees than does direct alignment of
the DNA sequences themselves. On the basis of paired
t-tests, the data in tables 1 and 2 make it clear that direct align-
ment of coding sequences is less preferable (P , 0.001).

Another question this study was designed to address
was whether protein sequences or DNA coding sequences
gave more accurate trees. The tree scores from table 5 were
pooled with their corresponding tree scores from table 3,
and the topology scores from table 5 were pooled with their
corresponding topology scores from table 4, and each of the
protein-based methods was compared with its correspond-
ing DNA-CA–based method (NJ with NJ-K2P, Parsimony
with Weighted Parsimony, and Bayesian with Bayesian) by
paired t-tests. When Neighbor Joining was used, the protein
tree scores were not significantly different from the DNA-
CA tree scores, but the topology scores of the NJ K2P
DNA-CA were significantly higher (P 5 0.005) than those
of the NJ protein trees. When parsimony was used, protein
tree scores were significantly higher than Weighted Parsi-
mony for DNA-CA (P 5 0.005), but topology scores were
not significantly different. When the Bayesian method was
used, DNA-CA tree scores were significantly higher than
protein tree scores (P 5 0.01), but topology scores were
not significantly different. These results do not permit mak-
ing any generalized statement about the relative accuracies
of protein-based versus DNA-CA–based phylogenetic
trees.

When paired t-tests were used to compare all of the
methods for the pooled data, Bayesian DNA-CA trees
had significantly higher tree scores (P , 0.0001) and top-
ology scores (P, 0.0001) than any other trees, followed by
ML DNA-CA and Parsimony protein trees. Based on accu-
racy alone, it would appear that the method of choice would
be Bayesian estimation of trees based on CodonAligned
DNA sequences. There is, however, the matter of the time
required to perform the analyses. Table 6 shows the timesT
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required for each method to estimate a tree from the same
data set. It requires over 10,000 times as much time to esti-
mate DNA-CA Bayesian trees as it does to estimate protein-
based parsimony trees. Based on the pooled data, that time
increase results in an 8.2% increase in tree score, and a 2.5%
increase in topology score. However, the Bayesian method,
as implemented by MrBayes, includes the estimation of
branch support as posterior probabilities within the time
required for the run. Comparable branch support for the
protein parsimony requires running at least 2,000 bootstrap
replications, which reduces the time advantage for protein
parsimony to a mere factor of 5.3.

Although it performs very well when ClustalX align-
ment quality scores are >20, the Bayesian estimation of
protein trees is particularly sensitive to the quality of the
alignment, and it is the slowest of the methods tested. Both
factors argue against it as a method of choice.

The most reasonable choice might well be to use both
parsimony estimation of protein trees and Bayesian estima-
tion of CodonAligned DNA trees, and to point out that any
topological differences represent real uncertainty.

A Final Note

EvolveAGene permits accepted mutations, both
amino acid substitutions and indels, to occur randomly over
the length of the gene. In reality, selective constraints vary
in different regions of proteins; e.g., indels, and to a lesser
extent amino acid substitutions, tend to appear more often
in surface loops than in helices within proteins. That ten-
dency produces runs or blocks within which few gaps
appear in alignments. The realism of EvolveAGene could
be improved by permitting the user to specify different
selective constraints within different regions of the input
(root) sequence. Similarly, not all amino acid substitutions
are equally likely; e.g., leucine is more likely to be replaced
by valine than it is by proline, even though each requires a
single nucleotide change. The realism of EvolveAGene
could be improved by permitting the user to include a sub-
stitution matrix, such as a PAM matrix, that would modify
the probability of accepting an amino acid replacement
mutation. At present, EvolveAGene permits only purifying
selection. In reality, both the intensity and direction of
selection vary over the branches of a tree. It would increase

the realism of the simulation if the user could apply differ-
ent intensities and directions of selection over various por-
tions of the tree. The approach to the simulation of sequence
evolution exemplified by EvolveAGene should therefore be
considered not an end, but a beginning of a more biological
approach to sequence evolution simulation.
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