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ABSTRACT

Summary: The development of RNA sequencing (RNA-Seq)
makes it possible for us to measure transcription at an
unprecedented precision and throughput. However, challenges
remain in understanding the source and distribution of the
reads, modeling the transcript abundance and developing efficient
computational methods. In this article, we develop a method to deal
with the isoform expression estimation problem. The count of reads
falling into a locus on the genome annotated with multiple isoforms
is modeled as a Poisson variable. The expression of each individual
isoform is estimated by solving a convex optimization problem and
statistical inferences about the parameters are obtained from the
posterior distribution by importance sampling. Our results show that
isoform expression inference in RNA-Seq is possible by employing
appropriate statistical methods.
Contact: whwong@stanford.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Recently, ultra high-throughput sequencing of RNA (RNA-Seq) has
been developed as an approach for transcriptome analysis in several
different species such as yeast (Nagalakshmi et al., 2008; Wilhelm
et al., 2008), Arabidopsis (Lister et al., 2008), mouse (Cloonan et al.,
2008; Mortazavi et al., 2008) and human (Marioni et al., 2008; Pan
et al., 2008; Sultan et al., 2008; Wang et al., 2008). By obtaining tens
of millions of short reads from the transcript population of interest
and by mapping these reads to the genome, RNA-Seq produces
digital (counts) rather than analog signals and offers the chance
to detect novel transcripts. Because of these desirable features,
not shared by qRT-PCR or microarray-based methods, RNA-Seq is
widely regarded as an attractive approach to measure transcription
in an unbiased and comprehensive manner. Several protocols for
RNA-Seq experiments and methods for transcript quantification
have been developed (see above references). In particular, in
Mortazavi et al. (2008), the expression level of a transcript is
quantified as reads per kilobase of the transcript per million mapped
reads to the transcriptome (RPKM). By normalizing the counts
of reads mapped to (all the exons belonging to) a gene against
the transcript length and the sequencing depth, the RPKM index
makes it easy to compare expression measurements across different
genes and different experiments. In mouse liver tissue samples,
RNA-Seq based and exon array-based expression indexes across

∗To whom correspondence should be addressed.

RefSeq genes are very well correlated (rank correlation >0.85)
(Kapur et al., 2008). Given that the datasets were generated by
independent laboratories [RNA-Seq from Mortazavi et al. (2008),
exon arrays from Affymetrix], this high degree of concordance gives
us confidence on the quantitative accuracy of both methods for
gene-level expression analysis.

In principle, the RPKM concept is equally applicable to quantify
isoform expression—it is simply the counts of reads mapped to
a specific isoform normalized against the isoform length and the
sequencing depth. In practice, however, it is difficult to compute
isoform-specific RPKM because most reads that are mapped to
the gene are shared by more than one isoform. In this article, we
developed a statistical model to describe how the counts mapped to
the exons of the gene are related to the isoform-specific expression
indexes. Based on this model, we studied the statistical methods
to estimate isoform-specific expression indexes and to quantify
the uncertainties in the estimates. Our method can be viewed as
an extension of the RPKM concept and reduces to the RPKM
index when there is only one isoform. It was found that in many
cases standard inference based on the asymptotic distribution of
the maximum likelihood estimate (MLE) is inadequate because the
Fisher information matrix is almost singular or the MLE is near the
boundary of the parameter space. To address these difficulties, we
have developed a Bayesian inference method based on importance
sampling from the posterior distribution.

2 THE MODEL

2.1 Notations
First we introduce the notations. Let G be the set of genes. For any
gene g∈G , let Fg ={fg,i|i∈[1,ng]} be the set of its isoforms, where
ng is a positive integer. Also, let F ={fg,i|g∈G,i∈[1,ng]} be the
set of all the possible isoforms of all the genes, which stands for all
the different possible transcripts in the sample being sequenced. For
any isoform f ∈F, let lf be its length, and let kf be the number of
copies of transcripts in the form of isoform f in the sample.

Based on the above notations, we know that the total length of
the transcripts in the sample is

∑
f ∈F kf lf . We model sequencing

process as a simple random sampling, in which every read is sampled
independently and uniformly from every possible nucleotides in the
sample. Therefore, the probability that a read comes from some
isoform f is pf =kf lf /

∑
f ∈F kf lf . By defining θf =kf /

∑
f ∈F kf lf

as the expression index of isoform f in the sample, we can rewrite
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pf as pf =θf lf and then we have
∑

f ∈F θf lf =1, which makes the
model identifiable.

Let w be the total number of mapped reads. Given an isoform f ,
and a region of length l in f , because in our model the reads are
sampled uniformly and independently, we know that the number of
reads coming from that region, denoted by some random variable
X, follows a binomial distribution with parameters w and p=θf l.
Since usually w is very large and p is very small, the binomial
distribution here can be approximated well by a Poisson distribution
with parameter λ=wθf l. The uniform model and the Poisson
approximation have been successfully used and tested in several
previous RNA-Seq studies such as Mortazavi et al. (2008) and
Marioni et al. (2008).

In general, for a given read we can map it to the reference sequence
so that we know where it comes from. However, in cases that a gene
has more than one isoform, these isoforms often share some common
regions (e.g. common exons), thus making it very difficult for us to
determine the true isoform a read actually comes from if that read
is mapped to a common region.

As a summary, suppose that the gene structures and the sequencing
reads are all given, i.e. G,F,l,w are all known, the problem left to
us now is to estimate θ .

2.2 Poisson model
We deal with the problem by solving a Poisson model. For a gene g,
suppose it has m exons with lengths L=[l1,l2,...,lm] and n isoforms
with expressions �=[θ1,θ2,...,θn], where L and � are vectors.
Suppose these isoforms only share exons as a whole, i.e. they either
share an exon or do not share it. In cases that two isoforms share
part of an exon, we can split the exon into several parts and then
treat each part as an exon separately.

Suppose we have a set of observations X={Xs|s∈S}, where S
is an index set, and each observation X ∈X is a random variable
representing the number of reads falling into some region of interest
in g. For example, reads falling into some exon, or reads falling into
some exon–exon junction.

From the above observation, we know for every X ∈X that it
follows a Poisson distribution with some parameter λ. For instance,
the λ for the number of reads falling into exon j is ljw

∑n
i=1cijθi,

where cij is 1 if isoform i contains exon j and 0 otherwise. For exon–
exon junctions, the λ is lw

∑n
i=1cijcikθi, where l is the length of the

junction region, and j and k are indices of the two exons involved
in the junction being investigated.

In general, λ is a linear function of θ1,θ2,...,θn, i.e. λ=∑n
i=1aiθi.

From the probability mass function of the Poisson distribution,
we have the likelihood function

L(�|x)=P(X =x|�)= e−λλx

x! . (1)

For the whole set of observations X={Xs|s∈S}, if the
corresponding regions do not overlap then Xs’s are independent and
we can write the joint log-likelihood function as

log(L(�|xs,s∈S))=
∑
s∈S

log(L(�|xs)) (2)

The MLE is obtained by

�̂=argmax
�

log(L(�|xs,s∈S))

2.3 Single-isoform case
Taking logarithm on (1), we have

log(L(�|x)) =−λ+x logλ−log(x!)
=−∑n

i=1aiθi +x log
(∑n

i=1aiθi
)−log(x!) (3)

Taking derivatives, we get

∂log(L(�|x))

∂θj
=−aj +

xaj∑n
i=1aiθi

(4)

When n=1, so �=θ1 is a real number; it is well known that
�̂=x/a. When x is the number of reads falling into some region of
length l, we have a=wl and therefore �̂=x/wl, which is equivalent
to the RPKM defined in Mortazavi et al. (2008).

The Poisson model and the maximum likelihood estimation for
genes with single isoform have been used in Marioni et al. (2008)
for detecting differences among technical replicates.

2.4 Multiple-isoform case
When n>1, i.e. the gene has more than one isoform, a simple closed-
form solution is no longer available. We employ numerical methods
for solving the maximum likelihood estimation problem. Here we
show that the model has a nice property.

Proposition 1. The joint log-likelihood function (2) is concave.

Proof. Since the sum of concave functions is still concave,
proving the concavity of the log-likelihood function with single
observation (3) suffices.

Taking second-order derivatives of (3), we get

∂2log(L(�|x))

∂θj∂θk
=− xajak(∑n

i=1aiθi
)2

Consider the Hessian matrix H(�) where the (j,k)-th element is

Hjk(�)= ∂2log(L(�|x))

∂θj∂θk

We can write H as H=−da′a where a=[a1,a2,...,an] is a vector

and d =x/
(∑n

i=1aiθi
)2 is a scalar.

When x≥0 (which is true here because x is the observed
number of reads falling into some region of interest) we have
d ≥0, therefore H is negative semi-definite because for any vector
y=[y1,y2,...,yn], we have yHy′ =y(−da′a)y′ =−d(ya′)(ya′)′ =
−d(ya′)2 ≤0. The concavity of the log-likelihood function is
therefore guaranteed. �

Given the concavity of the joint log-likelihood function, we can
use any optimization method to compute the maximum likelihood
estimator �̂, and any local maximum is guaranteed to be a global
maximum.

3 STATISTICAL INFERENCES
We are interested in statistical inference methods that go beyond
point estimation. For example, we would like to quantify the degree
of uncertainty in our point estimates and to identify features of the
parameters that are poorly (or well) estimated.
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3.1 Fisher information matrix
We know that when the true parameter is not on the boundary of
the parameter space, the distribution of �̂ can be approximated
asymptotically by a normal distribution with mean � and covariance
matrix equal to the inverse Fisher information matrix I(�)−1

[see chapter 5 of van der Vaart (1998)]. For a single observation X,
we know that the (j,k)-th element of the Fisher information matrix is

Ijk(�) =CovX

[
∂log(L(�|X))

∂θj
,
∂log(L(�|X))

∂θk

∣∣∣∣�
]

=−EX

[
∂2log(L(�|X))

∂θj∂θk

∣∣∣∣∣�
]

=−EX

[
− Xajak(∑n

i=1aiθi
)2

∣∣∣∣∣�
]

= ajak∑n
i=1aiθi

The last equation holds because the mean of a Poisson random
variable with parameter λ=∑n

i=1aiθi is λ itself.
Since in practice we do not know the true �, we can use the

estimated �̂ to approximate the true �, or alternatively, we can use
the observed Fisher information matrix at �̂

Jjk(�̂)=− ∂2log(L(�|x))

∂θj∂θk

∣∣∣∣∣
�=�̂

= xajak(∑n
i=1ai θ̂i

)2

For a set of independent observations X={Xs|s∈S}, we have
the Fisher information matrix and the observed Fisher information
matrix for the joint distribution

Ijk(�)=
∑
s∈S

I(s)
jk (�)=

∑
s∈S

a(s)
j a(s)

k∑n
i=1a(s)

i θi

Jjk(�̂)=
∑
s∈S

J (s)
jk (�̂)=

∑
s∈S

xa(s)
j a(s)

k(∑n
i=1a(s)

i θ̂i

)2

3.2 Importance sampling from the posterior
distribution

When some of the θi’s are close to zero, i.e. some isoforms are
lowly expressed, the likelihood function is truncated at θi =0 since
all the isoform expressions should be non-negative. Therefore, we
have constraints θi ≥0 for all i. As a result, the covariance matrix
estimated by the inverse of the Fisher information matrix is no longer
reliable.

To handle this difficulty, our inference on the θi’s is based on their
joint posterior distribution instead of the asymptotic distribution
of their MLE. This is done by the importance sampling method.
[see chapter 2 of Liu (2002)]. First, we generate random samples
�(1),�(2),...,�(k) from a proposal density and associate with
each of them an importance weight w(i) =L(�(i))/q(�(i)), where
L(�(i)) is the likelihood function at �(i) and q(�(i)) is the density
of the proposal distribution at �(i).

Using these weighted samples, we can estimate the posterior
probability of any event A as

P(�∈A|X)≈
∑

�(i)∈Aw(i)∑
w(i)

and the posterior expectation of any function u as

E(u(�)|X)≈
∑

w(i)u(�(i))∑
w(i)

This allows us to make any computation necessary for statistical
inferences such as estimating θi by computing its posterior
expectation, and quantifying the uncertainty of this estimate by
computing an interval around it that contains 95% of the posterior
probability (95% probability interval).

In this article, the proposal density is taken to be a multivariate
normal with mean vector equal to the MLE of � and covariance
matrix equal to a matrix modified from the inverse of the Fisher
information matrix. The modification, described in more detail
below, is designed to improve the conditioning of the matrix and
to reduce the variance of the importance weights.

4 RESULTS
We test our model with the RNA sequencing dataset published
in Mortazavi et al. (2008). In this dataset, three mouse tissue
samples: liver, skeletal muscle and brain are sequenced on the Solexa
platform. For each tissue, 60–80 million reads from two replicates
are put together.

We take gene annotations from the RefSeq mouse mRNAdatabase
(mm9, NCBI Build 37) downloaded from the UCSC Genome
Browser (Karolchik et al., 2008). Reference sequences for all
the exons and exon–exon junctions are extracted from the mouse
genome (mm9, NCBI Build 37) and all the sequencing reads are
mapped to the reference sequences using SeqMap, a short sequence
mapping Tool (Jiang and Wong, 2008).

Among all the 19 069 RefSeq genes in the database, 1510 genes
have more than one isoform. For these genes, the average number
of isoforms is 2.39 and the maximum number of isoforms is 12.

4.1 Isoform expression estimation
We use coordinate-wise hill climbing for solving the optimization
problem. Individual parameters are optimized in turn until con-
vergence. We keep all the parameters greater or equal to zero during
the optimization process. This method is simple, robust and also
quite efficient in our experiments. For the 1510 genes which have
more than one isoform, the mean of the number of iterations before
convergence is 32.87 and the median is 15.

In our computations, instead of using the actual exon length l, we
use the effective exon length defined as l−r (where r is the read
length, which is 25 in our experiments), because it is the number of
possible places that a read can be mapped to in that exon. Moreover,
exons that are always either present or not present at the same time
(e.g. the three left-most exons in Fig. 2b) are regarded as a single
(super) exon in our computations and the reads mapped to them are
put together.

We define the expression of a gene as the sum of expressions of
isoforms that belong to that gene. A histogram of gene expressions
in liver samples is shown in Figure 1. Comparing liver and muscle
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Fig. 1. Histogram of gene expressions in liver samples in the unit of RPKM.
Genes are grouped into eight log-scaled bins according to their expressions.
Genes are considered to be lowly (or highly) expressed if their RPKMs are
below 1 (or above 100). Genes that have RPKMs between 1 and 100 are
considered to be moderately expressed.

samples, 487 genes show strong differential expression (>10-fold)
and are highly expressed (expression >100) in at least one of the
two tissues.

A gene (Pdlim5) whose isoforms are differentially expressed is
shown in Figure 2a. In brain samples, the estimated expressions
for the three isoforms (from top to bottom) are 5.05, 0.42 and 0,
respectively. In muscle samples they are expressed at 1.91, 238.67
and 14.89, respectively. As we can see, the first isoform is actually
downregulated in muscle, although in terms of gene-level expression
it shows upregulation.

4.2 Statistical inferences
For many genes, we encounter problems when computing the Fisher
information matrix I and the observed Fisher information matrix J ,
because:

(1) The term
∑n

i=1aiθi in the denominator may be zero.

(2) The matrices may be degenerated and therefore not invertible.

To solve these problems, we add a matrix εI (where I is the
identity matrix) to the computed Fisher information matrix and the
computed observed Fisher information matrix.

To handle the difficulties associated with ill-conditioned Fisher
information matrix and the boundary effect of the parameter space,
we employ importance sampling to simulate from the posterior
distribution. Based on the expression vector �̂ estimated by
optimizing the likelihood function and the covariance matrix C
estimated by the Fisher information matrix, we generate samples
from multivariate normal distribution with mean �̂ and covariance
matrix 4(C+Tr(C)I/10), where I is the identity matrix and Tr(C) is
the trace of C. This choice of proposal distribution takes advantage
of the correlation structure estimated in C and therefore will be
efficient in terms of sampling. For each gene, we generate 50 000
samples from the proposal distribution and re-estimate the isoform
expressions, gene expression and covariance matrix based on these
samples. We also estimate 95% probability intervals for isoform

expressions and gene expression. Using the importance weights we
can compute these intervals as intervals that contain 95% of the
probability in the marginal posterior distribution of the parameters
of interest.

We define a 95% probability interval to be a narrow one if its
length is <10% of the value of its corresponding gene expression. In
liver, 2115 genes (11% of all the 19 069 genes) have narrow intervals
and 2071 of these 2155 genes have expression >10. In the 728 highly
expressed genes (expression >100), 723 (99%) of them have narrow
intervals. For isoform expressions, there are 121 genes (8% of all the
1510 genes with multiple isoforms) that have narrow intervals for
all isoforms, and in the 49 genes with expression >100 and multiple
isoforms, 42 (86%) of them have narrow intervals for all isoforms.
As we can see, less uncertainties are in gene expressions than in
isoform expressions. Similar results are found in muscle and brain
samples.

An example of mouse gene Dbi is shown in Figure 2b. Where the
two isoforms are estimated to have expressions 3.87 and 580.68,
respectively, and the 95% probability intervals estimated are (2.22,
6.76) and (559.52, 601.86), respectively. As we can see in this case,
as the expression gets higher, the interval gets relatively narrower
which means the estimate gets more accurate.

We notice that in many cases isoform-level inference is much
less precise than gene-level inference, i.e. we are more certain
about gene expression than isoform expressions. For example, in
Figure 2c, the two isoforms are estimated to have expressions 0.48
and 6.60 with 95% probability intervals (0.05, 3.01) and (4.20,
7.28), respectively. However, the gene expression is estimated as
7.09 with a much narrower interval (6.52, 7.84). This is because
the two isoforms are distinguished only by a very short exon which
makes both of their expressions very sensitive to the number of reads
falling into this exon. However, the gene expression is basically
determined by all the reads falling into all the exons, which is a
much larger number so that it has much smaller variance. Actually,
in this case the expressions of the two isoforms are highly negatively
correlated.

Another example is shown in Figure 2d. It is easy for us to tell that
the first isoform (from top to bottom) is not expressed because there
is no read falling into the first exon (from left to right). However, it
is not easy for us to tell the expressions of the other two isoforms
just by examining the mapped reads. The estimated expressions for
the second and the third isoforms are 1.57 and 13.58, respectively,
which is consistent with the fact that the read densities in the second
and the third exons are approximately at the same level. The 95%
probability intervals (0.09, 3.80) and (11.51, 15.30) show the degree
of uncertainty that we have in these estimates. Figure 3 shows all
one- and two-dimensional marginal posterior distributions of the
three parameters.

4.3 Validation with microarray data
We compare the results derived by our approach to the results derived
by a microarray approach in Pan et al. (2004), where customized
microarrays were used to investigate 3126 ‘cassette-type’alternative
splicing (AS) events in 10 mouse tissues, with seven probes targeting
each AS event. For each event in each tissue, a percent alternatively
spliced exon exclusion value (%ASex) was computed. Furthermore,
some selected AS events (eight were shown in the article) in 10
tissues were validated with over 200 RT-PCR experiments and with
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(a)

(b)

(c)

(d)

Fig. 2. (a) Visualization of RNA-Seq reads falling into mouse gene Pdlim5 in CisGenome Browser (Ji et al., 2008). The four horizontal tracks in the
picture are (from top to bottom): genomic coordinates, gene structure where exons are magnified for better visualization, the reads falling into each genomic
coordinate in brain and muscle samples, where the red or blue bar represents the number of reads on the forward or reverse strand that starts at that position.
Visualization of mouse genes Dbi (b), Clk1 (c) and Fetub (d) in brain tissue.

good consistency: Pearson’s correlation coefficient (PCC) > 0.6 for
all selected AS events; 60% of the selected AS events have %ASex
values within ±0.15 from the values determined by RT-PCR.

For all 3126 exons [annotated with GenBank id(s) and start and
end coordinates] investigated in Pan et al. (2004), 1193 of them can
be matched to an exon in the RefSeq annotation that we are using.
We then build gene models using these AS events with two isoforms
(f1 and f2) for each gene, one isoform (f1) with the alternatively
spliced exon and the other one (f2) without it. Afterwards, isoform
and gene expression values are computed using our approach in

three mouse tissues (liver, muscle and brain) using the RNA-Seq
data in Mortazavi et al. (2008). The AS exon exclusion values are
then computed as the ratios between the expression values of f2 and
the gene expression values.

We compare our computed AS exon exclusion values to the
%ASex values given in Pan et al. (2004) on a selected set of genes.
The selection criteria are:

(1) The gene should be moderately expressed, for which we use
the gene expression value >5 as the cutoff, where 5 is about
the median of all the gene expression values.
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Fig. 3. Statistical inference using importance sampling for mouse gene Fetub in brain tissue (Fig. 2d). Histograms of marginal posterior distribution of θ1, θ2

and θ3 are given in (a), (b) and (c), respectively. The gene expression is shown in (d) as a reference. The two red dotted vertical lines in each pictures are the
boundaries for the 95% probability intervals. (e), (f) and (g) are the heatmaps showing marginal posterior distributions of all two-parameter combinations.
We can see from the heatmaps that θ1 is almost uncorrelated with the other two parameters, while θ2 and θ3 are negatively correlated.

Table 1. The number of selected AS events, the PCC between our results
and the results in Pan et al. (2004), and the percentage of events that have
differences within ±0.15 between our results and the results in Pan et al.
(2004) for each of the three mouse tissues

Tissue No. selected PCC Events with
AS events differences within ±0.15(%)

Liver 472 0.48 58
Muscle 451 0.40 47
Brain 699 0.36 49

(2) The AS exon exclusion value should have a relatively small
95% probability interval, for which we use 0.5 as the cutoff,
i.e. (f u

2 − f l
2)/g<0.5, where f u

2 and f l
2 are the upper and lower

bounds of the 95% probability interval for the expression
value of f2, and g is the gene expression value.

Table 1 gives the number of events we selected, the PCC between
our results and the results in Pan et al. (2004), and the percentage
of events that have differences within ±0.15 between our results
and the results in Pan et al. (2004) for each of the three mouse
tissues.

We found that for some genes, the %ASex values computed
in Pan et al. (2004) are quite large, while the values computed
by our approach are close to zero. As a typical example, for gene
DNAJC7 in mouse brain tissue, there are 176 reads mapped to the
AS exon of length 89 nt, which is 1.98 reads per nucleotide. As a
comparison, there are 3300 reads mapped to the remaining part of
the gene of length 2223 nt, which is 1.48 reads per nucleotide. In
addition, there are 123 reads mapped to the two exon–exon junctions
that exclusively belong to f1, and no read mapped to the exon–exon
junction that exclusively belongs to f2. All of the above evidences

Table 2. Comparison results, with refined selection criteria

Tissue No. selected PCC Events with
AS events differences within ±0.15(%)

Liver 228 0.60 56
Muscle 194 0.48 48
Brain 298 0.44 57

indicate that f2 (the AS exon-excluding isoform) is either lowly
expressed or even not present in the sample, which is concordant
with theAS exon exclusion value (0.007) computed by our approach.
However, the %ASex value given in Pan et al. (2004) is 0.433. We
suspect that this type of discrepancy is caused by either errors in the
annotations, or noises in the microarray probe signals. To investigate
the consistency when these cases are excluded, we further filter the
AS events with one additional condition: f2/g<0.1, where f2/g is
the exclusion value computed by our approach. The comparison
results are given in Table 2. We found that better consistencies (in
terms of PCC) are obtained in all three tissues.

5 DISCUSSION
Our results show that isoform expression inference in RNA-Seq is
possible by employing the Poisson model and appropriate statistical
methods. Quantitative inferences can be drawn for a gene with one
or more isoforms. When we examine the mapped reads against the
annotated isoforms (e.g., Fig. 2d), we can see that our inferences are
always consistent with the ones suggested by the detailed inspection.
However, such gene-by-gene manual inspection cannot be scaled
to the genome level. Thus, the availability of a method that can
automatically extract this information should be a useful tool.
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We found that exon–exon junction reads can help to reduce
the 95% probability intervals because these reads fall into some
isoform-specific regions and therefore provide useful information
for separating the expressions of different isoforms. For instance,
in mouse liver tissue with RefSeq annotations, with junction reads,
the maximum relative interval [defined as maxf ∈Fg

(f u −f l)/g] for
all isoforms of a gene has an average length of 0.39 among all
the genes with multiple isoforms, while the value is 0.44 without
junction reads. Naturally, we believe paired-end reads and longer
reads will provide even more information. However, the handling
of paired-end reads will require further development.

Although uniform sampling and Poisson approximation of the
sequencing reads are proved to be useful in Marioni et al. (2008)
and also in our experiments, we do find that in some cases the
reads are not truly random and uniform. This is probably caused
by the technical bias in the fragmenting, priming and amplifying
procedures in the sequencing experiments. In some genes, we
discover exceptionally high peaks and also positive correlation in
read distributions between different tissues.Although in long regions
the non-random and non-uniform nature of the data may be averaged
out, their effects are non-negligible when we study short regions such
as single exons. We also found bias in read distributions towards the
3′ tail and also many 3′-UTR variants, which are important topics
for future studies.

In our model we have assumed that all the isoforms for a
gene are known beforehand. Currently, because of the complexity
of the transcriptome and the limitations of previous experimental
approaches, the isoform-level annotation is very incomplete.
However, the results in this article are still valuable for two reasons.
First, we can expect that many RNA-Seq datasets will be available in
the near future for various cell types, making it feasible to discover
most of the common isoforms. Second, we believe that isoform
expression quantification and novel transcription event discovery are
closely related problems and that progress towards one problem will
contribute to the progress towards the other. We hope the quantitative
isoform information will assist us in searching for new transcription
events. For instance, one can attempt to develop a goodness-of-fit
test to detect cases for which our model does not fit well, in this
way we may discover gene loci where the current annotation is
incomplete and where there may exist new isoforms or new AS
events. Fitting the model with unknown isoforms rather than known
ones may be another possible approach which requires further study.
If we allow the cij (which indicates whether isoform i contains exon
j) to be variable rather than fixed, our model would be able to allow
exon-skipping events in the current annotations. This only requires
some extra works in the estimation (e.g. using the EM algorithm
to infer the unknown cij’s). However, novel isoforms consist of not

only exon-skipping events but also many other events such as new
exons and exon variants. Moreover, with more variabilities in the
isoform structures, whether the current datasets are sufficient to solve
a complex model is yet to be studied. Finally, we believe that the
accuracy of the results will improve as the sequencing technology
evolves and generates longer sequences with less noise and higher
throughput.
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