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Abstract As an essential and basic biological disci-

pline, prokaryotic systematics is entering the era of

genomics. This paradigmatic shift is significant not

only for understanding molecular phylogeny at the

whole genome level but also in revealing the genetic

or epigenetic basis that accounts for the phenotypic

criteria used to classify and identify species. These

developments provide an opportunity and a challenge

for systematists to reanalyze the molecular mecha-

nisms underlying the taxonomic characteristics of

prokaryotes by drawing the knowledge from studies of

genomics and/or functional genomics employing

platform technologies and related bioinformatics

tools. It is expected that taxonomic books, such as

Bergey’s Manual of Systematic Bacteriology may

evolve into a systematics library indexed by phylog-

enomic information with an comprehensive under-

standing of prokaryotic speciation and associated

increasing knowledge of biological phenomena.
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Current ground rules in prokaryotic taxonomy

Microbial systematics is the scientific study of the kinds

and diversity of microorganisms and of relationships

between them (Goodfellow and O’Donnell 1993). It is a

basic scientific discipline that encompasses classifica-

tion, nomenclature and identification and includes

studies on genetic mechanisms, which underpin evolu-

tionary processes and phylogeny. The first step, clas-

sification, involves the generation of an orderly and

reliable framework for accommodating individual

strains based on similarities and differences of their

characters, though there has been a tendency to give

more weight to differences in practice. The next stage,

nomenclature, deals with the terms used to recognize

ranks in the taxonomic hierarchy (e.g. genera and

species) and with the important practice of giving the

correct, internationally recognized names to taxonomic

groups by following the rules laid out in the Interna-

tional Code of Nomenclature of Bacteria (Sneath 1992).

The final step, identification, is both the act and result of

establishing whether strains belong to established and

validly published taxa. This involves determining the

key characteristics of unknown isolates by using

standard methods and criteria. Isolates found outside

known groups should be described and classified as new

taxa. It should be noted that the terms classification and

taxonomy are not synonymous, the latter denotes the

theoretical study of classification, including its bases,

principles and roles (Simpson 1961).

Classification is the basis to other sciences, but at

the same time is dependant on them for the acquisition

of new data derived from technological advances.

However, the basic unit of classification (and identi-

fication) of the species through a universally accepted

definition of species in prokaryotic systematics is still

a highly charged issue (Goodfellow et al. 1997;

Schleifer 2009). In contrast, it is well known that the

classification of prokaryotic groups passes through

three steps, alpha (analytical phase), beta (synthetic

phase), and gamma (biological phase) taxonomy.

The first taxonomy stage, i.e., the alpha taxonomy is

the level at which species are classified, named and

identified. Then, the beta taxonomy covers the assign-

ment of species to natural classifications; these may be

based on either phenetic or phylogenetic criteria

(Goodfellow and O’Donnell 1993). Phylogenetic

classifications are often considered to be the most

theoretically sound (Doolittle 1999) and most beautiful

in nature (Pace 2009). Phylogenetic criteria, notably

16S rRNA sequence variations in archaea and bacteria,

are seen to provide the backbone for the classification

of prokaryotes (Vandamme et al. 1996; Tindall et al.

2010). However, current approaches to the classifica-

tion of prokaryotes rest on the integrated use of

genotypic and phenotypic features acquired through

the application of chemotaxonomic, molecular sys-

tematic and numerical taxonomic procedures (Good-

fellow and O’Donnell 1993; Vandamme et al. 1996;

Tindall et al. 2010). This practice, known as polyphasic

taxonomy was introduced by Colwell (1970) to

encompass successive or simultaneous studies on

groups of prokaryotes using methods chosen to yield

high quality genotypic and phenotypic data. The

extensive application of polyphasic taxonomy has led

to marked improvements in the classification of

prokaryotes that in turn has provided a sound basis

for stable nomenclature and improved identification, as

exemplified in the present edition of Bergey’s Manual

of Systematic Bacteriology (de Vos et al. 2009; Krieg

et al. 2010; Goodfellow et al. 2011). Nevertheless, the

polyphasic approach to classification is essentially

utilitarian and it does not address the need to generate a

theory-derived classification based on phylogenetic/

evolutionary concepts (Schleifer 2009).

The final stage, gamma taxonomy, covers intraspe-

cific categories such as subspecies, ecotypes and

polymorphisms and concerns over biological aspects

of taxa. The analysis of intraspecific variation and

related evolutionary processes is critical in revealing

the underlining mechanism of speciation, an important

aspect of systematics. However, most studies in this

area are carried out by scientists working in ecology

(environmental biology) (Lucker et al. 2010; Mira

et al. 2010) and epidemiology (medical biology)

(Morschhauser et al. 2000; Morelli et al. 2010) rather

than by taxonomists.

Classification is a prerequisite for identification

(Priest and Williams 1993). The development of both

disciplines depended heavily on the innovations in

technology (Klenk and Goker 2010). In general, the

kinds of characters used to describe ‘‘similarities’’ and

‘‘differences’’ between microbial taxa depend on

which techniques and associated tools are used.

Reliance on microscopy and pure cultures led Ferdi-

nand Cohn (1872) to classify bacteria into six genera

based on morphological properties, a study that started

an era whereby microbiologists began to reveal the
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tremendous diversity of microorganisms. Initially, the

most important taxonomic markers used in this

classical approach were limited to morphology,

growth requirements, and pathogenic potential. Later,

serological traits and other physiological characters

were used to distinguish among different bacteria,

notably pathogens and their subtypes, a skew that is

still evident today. In the first half of the last century,

more and more biochemical data enriched our knowl-

edge of enzymology and metabolism, thereby further

facilitating the recognition of different kinds of

microbes (Buchanan 1955). This chemotaxonomic

approach significantly improved the resolution of

classifications when compared to those based on

morphological features (Schleifer and Stackebrandt

1983) and thereby leading to a step forward in

microbial systematics.

Chemical composition of genomic DNA (GC

content) was one of the important chemotaxonomic

characters to be widely used in classification. Then,

microbial systematists realized the significance of

DNA sequence information during the early days of

DNA–DNA hybridization and later the importance of

rRNA sequence studies. The emergence of phyloge-

netic inference based on the sequence of small subunit

ribosomal RNA not only led to the recognition of the

Archaea as a separate kingdom (Woese and Fox

1977), but also moved prokaryotic systematics into a

new era. In this respect, it has to be emphasized that, in

the final analysis, the genome is the ultimate record of

the evolutionary history of life (Zuckerkandl and

Pauling 1965; Boussau and Daubin 2010). It now

needs to be recognized that fast developing sequenc-

ing techniques provide a new key that will lead to the

classification of prokaryotes based on genomic data

(Wu et al. 2009; Metzker 2010). The formerly

implausible possibility of using data from entire

genome sequences in prokaryotic classification is

becoming, or will soon, become a reality. In fact, a few

distinct but related phylogenetic systems have been

developed based on genotypic information derived

from DNA structural information (Wu et al. 2009).

Genomic information for prokaryotic systematics

The availability of ever increasing whole-genome

data (see: http://www.ncbi.nlm.nih.gov/genomes/

lproks.cgi) and functional genomic analyses have

significantly improved our understanding of the bio-

chemistry, genetics, physiology and evolution of

microorganisms (Wu et al. 2009). The explosion of

genomic information provides unprecedented oppor-

tunities for assessing taxonomic relationships between

microorganisms, thereby allowing the generation of

molecular phylogenies. Comparison of related gen-

omes and inferences drawn from ancestral ones will

allow description of species by characterizing genetic

events, such as gene duplication, gene decay, hori-

zontal gene transfer, as well as indels (insertions and

deletions) and single nucleotide polymorphisms

(SNPs), at chromosomal and gene levels. So far a few

models have been proposed to address fundamental

evolutionary questions; some of which have demon-

strated power with accuracy (Coenye et al. 2005;

Konstantinidis and Tiedje 2005; Boussau and Daubin

2010).

Gene duplication is important as it influences

genetic adaptation of microorganisms to changing

environments, notably by genome expansion, thereby

promoting species diversity in nature (Hooper and

Berg 2003; Hittinger and Carroll 2007; Innan and

Kondrashov 2010). The analysis of paralogous genes

within whole genomes shows that more than 40% of

the coding capacity of a bacterial genome may have

originated through gene duplication (Jordan et al.

2001; Gevers et al. 2004). Initially, it was proposed

that bacterial genomes might have evolved from a

small ancestral genome through several gene duplica-

tions (Kunisawa 1995) but inferences drawn from

currently available genomes indicate that gene dupli-

cation has a modest effect on genome evolution

(Kolsto 1997). On the other hand, it is worth

mentioning that genes involved in environmental

adaptation are retained after duplication (Gevers

et al. 2004) suggesting that there is a role for gene

duplication in microbial evolution.

As an opposite force, gene decay leads to the

contraction of genomes. Complete or partial nucleo-

tide deletions in functional genes may lead to inactive

genes or pseudogenes, respectively (Andersson and

Andersson 2001). The influence of gene decay is

variable within different bacterial lineages, it is

particularly apparent in some bacterial groups with a

host-associated lifestyle, such as Mycobacterium lep-

rae (3.2 Mb). The genome of this organism is less than

half of that of the nonpathogenic Mycobacterium

smegmatis (7.0 Mb), as it contains 1,116 pseudogenes

Antonie van Leeuwenhoek (2012) 101:21–34 23

123

http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi
http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi


and inactive genes (Cole et al. 2001; Monot et al.

2009)

Prokaryotes have evolved other mechanisms for

rapid adaptation to new environmental niches. The

introduction of novel genes into prokaryotes by

horizontal gene transfer (HGT) may lead to diversi-

fication and speciation (Lawrence and Retchless 2009;

Ochman et al. 2000). Taking this concept to an

extreme, it can be claimed that two taxa are more

similar to one another than to a third one not because

they share a more recent ancestor but because they

exchange genes more frequently (Gogarten et al.

2002). The estimated frequency of HGT genes in

whole genomes of prokaryotes is usually low (Kunin

and Ouzounis 2003), however, HGT may play a

significant biological role in their evolution through,

for instance, the acquisition of antibiotic resistance or

pathogenic properties. In antibiotic producing actino-

mycetes, HGT is usually observed in non-conserved

regions of the genome, i.e., the non-core regions,

indicating the effect of more recent events (Bentley

et al. 2002; Philippe and Douady 2003).

Chromosomal rearrangement is a genetic event that

tends to influence whole genome organization more

than genome content. Its occurrence largely depends

on the presence of repeats and mobile elements, such

as insertion sequences, transposons and prophage

sequences (Kolsto 1997; Bennett 2004). Large-scale

chromosomal rearrangement may lead to a huge

inversion of DNA segments manifesting as an

X-shaped pattern in alignments of two complete

genomes. Generally, more distantly related bacterial

taxa show a higher level of chromosomal rearrange-

ment, and consequently, a more irregular gene order

(Rocha 2004).

In contrast to the large-scale genomic plasticity

described above, single nucleotide polymorphisms

(SNPs) and insertions/deletions (indels) are ‘‘small’’

genetic variations, which present at a higher rate in the

history of the genome revolution (Gupta and Griffiths

2002; Gao and Gupta 2012, in press). Basically, SNPs

can occur at any nucleotide within the genome

resulting in base substitution or gene truncation

mutations while small indels may lead to truncation,

deletion or frameshifts (TDF) of the affected genes.

However, analysis of whole genomes has shown that

the presence of SNPs and indels is not stochastic as

such changes are either preserved or lost depending

upon adaptations to the environment (Pearson et al.

2009). Because the characteristic status of SNPs is

limited to four possible nucleotides, and for its

constant mutation rate, SNPs can correlate the sam-

ples’ discrepancy time from their ancestor, they have

been widely and efficiently used for phylogenetic tree

construction covering decades or centuries of micro-

evolution, a task of gamma taxonomy (Gupta 2001;

Morelli et al. 2010; Pearson et al. 2009). However,

since many SNPs and indels may occur among closely

related bacteria, it is usually difficult to identify the

genetic divergences that account for the phenotypic

differences among them, unless some non-synony-

mous mutations or TDFs are found to be responsible

for phenotypic variations critical in taxonomy (Zhao

et al.2010).

The universally accepted DNA sequence-based

method currently used is based on analyses of 16S

rRNA gene sequences. The conservation of the 16S

rRNA gene made it one of the best candidates for low

cost PCR and sequencing studies. In addition, the

proportion of information content to length is rela-

tively high thereby providing high resolution and well-

supported phylogenetic trees that show relationships

from genera to phyla (Ludwig and Schleifer 1994). On

the other hand 16S rRNA sequences often contain

insufficient information to show relationships at lower

taxonomic ranks, particularly at the level of species

and subspecies (Stackebrandt et al. 2002). In addition,

nucleotide variations within multiple rRNA operons in

a given genome (Harrington and On 1999; Pei et al.

2010), as well as the possibility of 16S rRNA genes

derived from HGT (Ueda et al. 1999; Schouls et al.

2003), may distort relationships between taxa in

phylogenetic trees.

Since Darwin’s era, systematists have been classi-

fying individual species in order to reflect their

inferred evolutionary relationships. The availability

of complete genomes and the types of genomic

variations reviewed above, make it possible to recon-

struct phylogenies based on a much larger data set,

from which more reliable and accurate trees of life can

be built as shown in Table 1. So far, most studies on

prokaryotic classifications based on genomic

sequences have been focused on one or a few methods.

It is critical to understand that each method has a

limited resolution covering part, but not all levels of

taxonomic information (Coenye et al. 2005). Recently,

large-scale studies have integrated two or more

methods based on genome content and chromosomal
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organization (Kunin et al. 2005; Mira et al. 2010).

Historically, systematists have been seeking a tree

that is ‘‘fairly true for each great kingdom of

Nature’’, and which represents a ‘‘truly evolution

history of Life’’. However, there are still gaps

between classification and phylogeny with respect to

understanding the evolution of life based on geno-

mic sequences, even with complete genome

sequences. From this perspective, four issues must

be taken into consideration.

Table 1 Approaches for assessing taxonomic relationships based on whole-genome sequences

Approach Description Reference

Trees based on genome content analysis

(generally, identification and

comparison of orthologous genes)

1. Number of COGs between two genomes depends

on evolution distance between them

Bansal and Meyer (2002);

Brown et al. (2001)

2. Number and category of COGs selected for

comparison and phylogenetic tree construction is

important

Coenye and Vandamme (2003),

Huynen and Bork (1998);

Wolf et al. (2002)

3. Reasonably good congruence to 16S rRNA

sequence-based species relationships

Huson and Steel (2004); Huynen

and Bork (1998);

Snel et al. (1999).

4. HGT effect has yet to be thoroughly analyzed.

Phylogenetically closely related species may not

necessarily share more COGs, while species

adaptation to similar niches does

Dutilh et al. (2004);

Zhao et al. (2010)

Trees based on presence and absence of

genes

1. An alternative approach aiming at analyzing

genome content

Fitz-Gibbon and House (1999);

House and Fitz-Gibbon (2002);

Wolf et al. (1999)2. Initial results show good congruence with 16S

rRNA trees Lin and Gerstein (2000)

3. There are exceptions to point 2

Trees based on indels or SNPs in

conserved genes

1. Most widely distributed at the genomic level

reflecting fine evolutionary differences

Gupta et al. (2003)

Foster et al. (2009); Pearson

et al. (2009)

2. The relatively short evolutionary history of SNPs

and indels leaves less time to evolve reversals or

convergent mutations

Chuang et al. (2010)

Snel et al. (2005); Ventura et al.

(2007)

3. This approach is especially useful for defining

relationships between species

4. Currently limited by the numbers of taxa with

entire genomes for all members of a lineage. Still

prohibitively expensive for sequencing deeply

Trees based on chromosomal gene order 1. For a large part, gene order depends on gene

content. This approach needs a large-scale

comparison of COG genes

Korbel et al. (2002); Snel et al.

(2005); Wolf et al. (2001)

2. Gene order evolves faster than gene content. It is

more suited for resolving the phylogeny of closely

related species

Coenye et al. (2005);

Huynen and Bork (1998)

3. It is sensitive to chromosomal rearrangement Suyama and Bork (2001)

Trees based on metabolic pathway content

analysis

1. A method analyzing metabolic pathways with

physiological significance at genomic level

Hong et al. (2004);

Ma and Zeng (2004)

2. The major results of metabolic network based

phylogenetic trees show good congruence with

16S rRNA gene trees and gene content trees

Snel et al. (2005); Sutcliffe

(2010); Zhao et al. (2010)

3. Could be limited by a lack of understanding of

metabolic pathway reactions or by dearth of

functional genomic data

Okura et al. (2008); Sun et al.

(2011); Wang et al. (2010)
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(1) Artifacts may result from the selection of unrep-

resentative samples. Although a phylogeny-

driven GEBA (Genomic Encyclopedia of

Bacteria and Archaea) program was successfully

initiated (Wu et al. 2009), the increasing num-

bers of genomes available from databases such as

NCBI remain biased towards organisms of

biotechnological and medical importance. Fur-

thermore, it is estimated that more than 99% of

all microorganisms present in natural ecosystems

cannot be cultured using routine techniques

(Hugenholtz et al. 1998). Therefore, selectively

sequencing genomes of representative samples

of environmental diversity (like metagenomics)

will become increasingly important for taxo-

nomic research, especially when compared with

traditional methods.

(2) Artifacts may result from the use of unsophisti-

cated mathematical methods in the construction

of phylogenetic trees. The use of appropriate

mathematical models will become increasingly

important as more and more genome datasets

become available. The use of more reliable

mathematical models will lead to improved

precision but not necessarily to improved accu-

racy if systematic biases cannot be resolved by

the analytical methods (Rannala and Yang

2008).

(3) The increasing number of genes used in tree

building, may result in fewer common characters

(genes) left in genomes that can be used as

phylogenetic signals. The common characters

within a group are not usually shared among

sister groups hence only a few genes, most of

which encode for ribosomal proteins (Wu et al.

2009), can be used to reconstruct the tree of life.

This might explain why the phylogeny of

ribosomal RNA genes are usually consistent

with the tree of life simulated by concatenated

conserved gene sets. On the other hand, although

there are far greater numbers of genes encoding

indispensable metabolic processes for free living

cells than the number of ribosomal proteins, the

variations among the orthologous genes of

distant species are too high to be identified

exactly, completely and easily with respect to

techniques, i.e., the commonly employed bi-

directional best hit method (Tatusov et al. 1997).

Hence, the identification of conserved

orthologous groups (COG) determines the pro-

portion of genomic information used in subse-

quent analyses.

(4) Another crucial issue for phylogenomic analysis is

how to understand and correlate results generated

from analyses of incongruent genome features.

This problem is especially serious when the

theoretical bases of methods are completely

different, such as phylogenies based on super-

matrix and on string frequency. In other words,

whether it is an artifact or realistic, the result we

expect to obtain is a tree that is in accordance with

trees of individual genes and species, that is, the

biological information needed to understand and

explain the tree. However, improvements are

usually focused on aspects of mathematical meth-

ods without reference to the biological significance

behind them. Consequently, integrated approaches

based on biochemistry, genetics and physiology,

will provide an opportunity to the evolutionary

understanding of systematics at the genome level.

This approach should hopefully develop into a

trend for taxonomic research in future.

Understanding speciation of prokaryotes

and their biological impact with genomic

information

There is a continuing debate about the concept of

prokaryotic species (Table 2) though both systema-

tists and evolutionary biologists believe that closely

related species have some fundamental dynamic

properties, albeit with a boundary amongst them

(Achtman and Wagner 2008; Doolittle and Zhaxy-

bayeva 2009; Ereshefsky 2010; Lawrence and Retch-

less 2010). However, more thought needs to be given

to whether boundaries do exist and if so how they can

be found avoiding drawing conclusions merely based

on phenotypic criteria used to circumscribe so called

taxonomic ‘species’ (Ereshefsky 2010). The phylo-

phenetic species concept (Stackebrandt and Goebel

1994), which is based on three independent

approaches (genomic boundaries determined by

DNA–DNA hybridization; phenotype descriptions;

and relationships based on the phylogeny of 16S rRNA

genes), has been considered to be the most universally

applicable in the delineation of prokaryotic species
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(Rosselló-Mora and Amann 2001). Pragmatically, this

approach defined a series of standards for the

taxonomic characterisation of groups that could also

be replicated between different laboratories. Its

application provided stable and predictable classifica-

tions although some serious problems and draw-

backs were evident (Coenye et al. 2005; Schleifer

2009). Strictly speaking, this approach provides an

arbitrary and anthropocentric definition of prokaryotic

species.

Macrobial systematists have attempted to fit their

cluster-based demarcations in accordance with a

theory, that is, successful interbreeding within animal

and plant species. In contrast, since microorganisms

have unparalleled diversity and population sizes, it is

difficult to understand speciation processes based only

on one of the various models proposed for a theory-

based concept of species (Table 2). One so-called

theory-based concept of microbial species is The

Evolutionary Species Concept. However, due to the

nature of prokaryotes and the difficulties in observing

evolutionary tendencies amongst them, the application

of this concept is not yet possible (Rosselló-Mora

2003). Recently, James Staley proposed a phyloge-

nomic species concept (Staley 2009) that drew more

information from genome sequences for phylogenetic

reconstruction, mainly by multilocus sequence anal-

ysis (MLSA). This approach is not only theory-based

but also pragmatic. However, more comprehensive

phylogenetic signals should be generated from gene

content, gene order, and other whole-genome features

(Delsuc et al. 2005) and properties, which will soon be

available from ongoing extensive prokaryotic geno-

mic sequencing studies.

Speciation based on multiplex variability

of prokaryotic genomic evolution

Prokaryotic chromosomes have been sculptured more

by various kinds of large DNA alterations than by

mutations in single gene sequences (Mira et al. 2002).

The CRISPR-Cas (clustered regularly inter-spaced

short palindromic repeats-CRISPR-associated pro-

teins) modules recently characterized in archaea and

bacteria (Cui et al. 2008; Makarova et al. 2011) have

revealed a high degree of evolutionary plasticity in

prokaryotic genomes indicating that there are more

processes giving rise to genetic novelty than previ-

ously thought. According to the different donors of

genetic material, this evolutionary process can be

divided into two categories: vertical and lateral

inheritances.

Vertical inheritances provided sufficient evidence

for recapitulating the Darwinian-Mendelian model of

parent-to-offspring gene flow. However, this concept

has been severely challenged by the quantitative and

qualitative importance of genetic transfers between

lineages, notably between prokaryotic species (Char-

lebois et al. 2003), though such phenomena have

significant implications for the generation of a

universal tree of life. Given the genetic connections,

the topology of the evolutionary history of life

becomes more reticulate than tree-like (Lopez and

Bapteste 2009). The paradigmatic shift from a

Table 2 Prokaryotic species concepts

Concepts Description Reference

Cohesion species A group of organisms whose divergence is capped by one or more forces of cohesion Meglitsch (1954)

Biological species Frequently genetic exchange occurs among organisms within a species Mayr (1970)

Recombination

species

Demarcated species as groups of microbes whose genomes can recombine Dykuizen and

Green (1991)

Phonetic species A similarity concept based on statistically co-varying characteristics that are not

necessarily universal among members of the taxon

Hull (1997)

Evolutionary

species

A lineage concept that is explicitly temporal, treating these units as lineages extended in

time

Mayden (1997)

Ecological species Species seen as an evolutionary lineage bound by ecotype-periodic selection Cohan (2001,

2002)

Adaptive

divergence

species

Explicitly based on evolutionary theory, specifically the stable ecotype model; it

incorporates the processes of ecological adaptation, evolutionary descents and

homologous recombination

Vos (2011)
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monistic to a pluralistic understanding of evolutionary

processes is reflected by a graph-theoretical shift, from

trees (i.e., connected acyclic graphs) to networks (i.e.,

connected graphs that may contain reticulations,

Bapteste et al. 2009).

However, when HGT happened its effect as a

disruptive force might influence the phylogenic con-

struction of related organisms. HGT acquired ancient

genes are more likely to be retained in all descendants,

such as those encoding ATPases and aminoacyl-tRNA

synthetases, though they could be differentially lost

and/or secondarily transferred (Huang and Gogarten

2006). However, more ancient HGT is difficult to

identify based on similarities or phylogenetic analy-

ses. This means that the complication of evolutionary

networks introduced by convoluted HGT should be

limited to relative low-level taxonomic ranks. In other

words, HGT occurs frequently amongst closely related

individuals and species and rarely between genealog-

ically distant relatives (Andam and Gogarten 2011).

A recent study revealed that the frequency of HGT

was linearly correlated with similarities between

donors and recipients in both genome and proteome

sequences, with 86% of HGT occurring between pairs

of organisms that had less than 5% difference in GC

content (Popa et al. 2011). In addition, biased HGT has

the possibility to generate evolutionary patterns sim-

ilar to vertical inheritance, at least, the signal detected

in the descendents with a common ancestor is difficult

to be distinguished from the signal due to biased gene

transfer (Andam et al. 2010). A case study comparing

the level of incongruence in proteobacterial and

eukaryotic genes indicated that HGT could not be

considered as a major evolutionary process in these

bacteria (Soria-Carrasco and Castresana 2008).

Even when the complication brought about by

lateral inheritance was excluded, the phylogenetic

incongruence of orthologous genes implied that they

probably had a different evolutionary history (Bapte-

ste et al. 2005); in particular the use of different tree

reconstruction methods gave rise to a non-negligible

statistically significant incongruence (Jeffroy et al.

2006). In practice, the congruence among the individ-

ual genes is usually confirmed by a two-step process.

First, the candidate genes should be universally

distributed; potentially incongruent genes should be

excluded by statistical tests, e.g., the incongruence

length difference (ILD) test (Farris et al.1994; Planet

and Sarkar 2005). The retained genes should then

concatenated to maximize the phylogenetic signal and

enhance the statistical support for branches in the tree

inferred by the large dataset. Next, the individual

genes should be the subject of another test, such as the

Kishino-Hasegawa (KH), Shimodaira-Hasegawa (SH)

or the approximately unbiased (AU) test (Poptsova

2009) on the supposition that the super-tree is the best.

Crucially, when many genes are used in an analysis, it

is necessary to account for the fact that different genes

undergo different selective pressures hence the rate

heterogeneity within sites may vary from gene to gene

(Bevan et al. 2007). However, if the heterogeneity of

nucleotide frequencies among taxa is considered, this

refers to the equality of the nucleotide frequency bias

among species (Rosenberg and Kumar 2003), the

analysis seems to go in a direction that cannot be easily

controlled. Given that, we propose to establish a

database containing the pre-built evolutionary model

for each orthologous gene, and generate a standard

method of phylogenetic analysis for the purpose of

classification.

Integrating the biological knowledge of taxa

with prokaryotic systematics

Building classifications based on phylogenetic rela-

tionships between species is an essential facet of

prokaryotic systematists. However, this is not an end in

itself as it is also important to know the similarities or

differences in the biological characteristics between

diverse species. The ever-increasing genomic infor-

mation will provide a great opportunity not only to

delineate a more accurate and precise evolutionary

history of prokaryotic species but will also raise our

understanding of their distinctive biological properties.

In the era of chemotaxonomy, chemical character-

istics of cellular components, particularly, cell wall

and membrane constituents, were commonly used for

prokaryotic classification and identification though the

analysis and comparison of these chemical indices

were laborious and time-consuming. However, the

availability of whole-genome sequence data makes it a

realistic proposition to gradually correlate chemotax-

onomic phenotypes with the molecular genotypes of

corresponding taxa, particularly at species and sub-

species levels (Sutcliffe 2010; Zhao et al. 2010).

Recently, by sequencing and comparing the first

representative genome of the genus Amycolatopsis

with model Nocardia and Streptomyces strains, the
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genetic basis of cell wall components of Amycolatop-

sis mediterranei U32 was intensively revealed (Zhao

et al. 2010).

It should be noted that although the analysis

mentioned above seemed straightforward, reliable

results will only be obtained when the biosynthetic

pathways and the enzymes catalyzing cell wall

synthesis are thoroughly understood. Furthermore,

although the function of an enzyme might be predicted

by its evolutionary history (Eisen 1998), the genetic

variations corresponding to the phenotypic differences

may not be as simple as it was thought as observed

discrepancies may be derived from different sources,

such as multiple enzyme catalyzed reactions, and

quantitative rather than qualitative differences in

chemical components or enzyme activities. Conse-

quently, it is essential to analyse the genomic varia-

tions at all levels and, where applicable, to determine

epigenetic properties such as gene expression and

protein modification. This means that the correspond-

ing chemotaxonomic characters may need to be

reanalyzed in a more quantitative or representative

manner. In this context, sequence analysis of isoprenyl

diphosphate synthases, which determine the chain

length of menaquinones (MK) in actinomycetes may

only distinguish between MK 7 and MK 8, not

between longer chains (unpublished data, Zhao W

et al.). Similarly, the molecular mechanism determin-

ing the percentage of different phospholipid compo-

nents in cell membranes has still to be resolved

(Barona-Gómez et al. 2012, in press). Nonetheless, it

can be anticipated that the genetic basis, which

accounts for traditional phenotypic properties will be

identified in the near future thereby providing reliable

data for the classification and identification of archaeal

and bacterial taxa.

An understanding of the genetic basis of serotyping

using whole genome sequence data is another pro-

spective development at the subspecies/strains’ level.

Serotyping systems for Escherichia coli and Salmo-

nella spp. are well established, and widely used to

identify strains for epidemiological and surveillance

purposes (Beutin et al. 2007; Switt et al. 2009).

Compared to traditional technologies, genomic infor-

mation provides a simpler and more convenient

method for rapid serotyping by analysis of the gene

clusters (or genes), which encode the synthesis of

bacterial surface antigens (Liu et al. 2008). Recently,

serotypes of several bacteria, such as Cronobacter

sakazakii, Proteus and Vibrio parahaemolyticus were

identified using this approach (Okura et al. 2008;

Wang et al. 2010; Sun et al. 2011).

As we have emphasized, prokaryotic systematics is

a fundamental biological discipline. The relationships

among prokaryotic taxa should be based on their

phylogenomic information attendant with biological

knowledge encoded in genomes and expressed as their

phenotypes. Comparative and functional genomic

analyses need to be carried out in order to match up

with corresponding phenotypes. Meanwhile, estab-

lished relationships between biological knowledge

and phylogenomic information can be expected to

further facilitate biological research, not least with

respect to uncultured bacteria where genome

sequences can be derived from metagenomic sequenc-

ing (Petrosino et al. 2009; Mocali and Benedetti 2010).

A perspective for the molecular systematics

library of prokaryotes

Within a prokaryotic species, the gene reservoir

available for inclusion in its pan-genome is vast. More

genome-specific genes will continue to be identified

following sequencing of hundreds of genomes (Tett-

elin et al. 2005). In contrast, the core genome of a

species, including all genes responsible for its basic

cellular functions, will not change dramatically,

except in the case of some obligate bacterial symbionts

(Moran 2003). In other words, the core genome shapes

and maintains essential functions (Gil et al. 2004;

Koonin 2003), while the peripheral genome contrib-

utes to species diversity and/or encodes accessory

biochemical pathways and functions, which are not

essential for bacterial growth but may confer selective

advantages, such as adaptation to different niches or

survival under stressful growth conditions (Medini

et al. 2005).

The theoretical basis of the Ecological Species

Concept emphasizes the aspect of pan-genome selec-

tively outlined above (Koeppel et al. 2008; Pena et al.

2010). In contrast, attributes inherited from the last

common ancestor of these ecotypes determine who

they are, and where they came from. Nevertheless, the

concept that ‘everything is everywhere: but the

environment selects’ (O’Malley 2007) implies that

before environmentally imposed selective pressures

on strains, ‘who they are’ is of greater importance,
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especially for taxonomists. Consequently, we suggest

that the phylogenomic backbone of prokaryotic sys-

tematics should be merged with knowledge on the

biology of species (as it was for traditional taxonomy),

including cellular structure (morphological traits),

metabolism (biochemical traits) and development/

differentiation (physiological traits) in order to under-

stand their evolution along with their relationships

within genera and/or within their ecological niche.

Here, a molecular systematics library of prokaryotes

based on cellular life is proposed to update the current

taxonomic system.

As mentioned above, the present taxonomic system

has been organized as a book or dictionary, with the

phylogeny of 16S rRNA genes running through it. To

date, this polyphasic approach has facilitated the

classification of a remarkable diversity of prokaryotes

(de Vos et al. 2009; Krieg et al. 2010; Goodfellow

et al. 2011). On the other hand, the information

included in this ‘book’ is restricted due to the limited

information available on the genomic variation used to

construct the framework, but also because finite

phenogenetic characters were used to circumscribe

the biological characteristics of prokaryotic species,

especially in many cases where the phenotypes used

for describing different taxa have yet to be correlated

with their encoding genotypes.

All of the mismatches outlined above help account

for the fact that classification nowadays is a more or

less descriptive cataloging of natural history, this in

turn leads to a superficial understanding of evolution

and biology. In contrast, the plethora of knowledge to

be gleaned from phylogenomic analyses of species

through large scale sequencing efforts, will lead to the

identification of critical biological traits (phenotypes),

notably those revealed by genomic, functional geno-

mic and/or proteomic analyses and related experi-

mental studies. These developments will have a

revolutionary impact on the way prokaryotes are

classified and identified. These prospective changes

are in their infancy as too few representative genomes

are available, a situation that can be expected to

change rapidly. Besides systems biology studies based

on genomic information will continuously enrich our

biological knowledge of individual species. In time, a

molecular systematics library will be generated to

accommodate all species, as an open source library in

which phylogenies based on genomic sequences will

be enriched by corresponding biological knowledge.

As we stated at the beginning, prokaryotic system-

atics is a fundamental biological discipline. However,

the segregation of phylogeny and biology traits has

made the subject more and more complex rather than

providing a vehicle for explaining natural evolution-

ary and ecological systems. However, the develop-

ments outlined above should lead to a real

understanding of the nature of species and why they

are what they are, thereby moving prokaryotic systems

away from merely recording similarities and differ-

ences between them. Similarly, with respect to single

microorganisms the focus should be on understanding

cellular processes by drawing from increasingly

available phylogenomic information.

In summary, as the genomics era unfolds prokary-

otic taxonomy and systematics, it should be remodelled

so that taxa are defined by their biological nature. An

attractive consequence of this development will be that

systematics will no longer be seen as a laborious and

lagging science but will become an exciting discipline

based on ever increasing biological knowledge.
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Kämpfer P, Maiden MC et al (2002) Report of the ad hoc

committee for the re-evaluation of the species definition in

bacteriology. Int J Syst Evol Microbiol 52:1043–1047

Staley J (2009) The phylogenomic species concept. Microbi-
ology Today, May 09:80–83

Sun Y, Wang M, Liu H, Wang J, He X, Zeng J, Guo X, Li K, Cao

B, Wang L (2011) Development of an O-antigen serotyp-

ing scheme for Cronobacter sakazakii. Appl Environ

Microbiol 77:2209–2214

Sutcliffe IC (2010) A phylum level perspective on bacterial cell

envelope architecture. Trends Microbiol 18:464–470

Suyama M, Bork P (2001) Evolution of prokaryotic gene order:

genome rearrangements in closely related species. Trends

Genet 17:10–13

Switt AI, Soyer Y, Warnick LD, Wiedmann M (2009) Emer-

gence, distribution, and molecular and phenotypic char-

acteristics of Salmonella enterica serotype 4, 5, 12:i:-.

Foodborne Pathog Dis 6:407–415

Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic per-

spective on protein families. Science 278:631–637

Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D,

Ward NL, Angiuoli SV et al (2005) Genome analysis of

multiple pathogenic isolates of Streptococcus agalactiae:

implications for the microbial ‘‘pan-genome’’. Proc Natl

Acad Sci USA 102:13950–13955
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