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Abstract Microbial systematics and phylogeny

should form the foundation and guiding light for a

comprehensive understanding of different aspects of

microbiology. However, there are many critical issues

in microbial systematics that are currently not

resolved. Some of these include: how to define and

delimit a prokaryotic species; development of ratio-

nale criteria for the assignment of higher taxonomic

ranks; understanding what unique properties distin-

guish species from different groups; and understand-

ing the branching order and interrelationship among

higher prokaryotic clades. The sequencing of genomes

from large numbers of cultured as well as uncultured

microbes covering prokaryotic diversity provides

unique means to achieve these important objectives.

Prokaryotic genomes are found to be very diverse and

dynamic and horizontal gene transfers (HGTs) are

indicated to have played important role in species/

genome evolution. Although HGT adds a layer of

complexity in terms of understanding the genomes and

species evolution, it is contended that vast majority of

genes and genetic characteristics that are distinctive

characteristics of higher prokaryotic taxa are vertically

inherited and based on them a solid foundation for

microbial systematics can be developed. We describe

two kinds of molecular markers consisting of con-

served indels in protein sequences and whole proteins

that are specific for different groups that are proving

particularly valuable in defining different prokaryotic

groups in clear molecular terms and in understanding

their interrelationships. The genetic and biochemical

studies on these taxa-specific molecular markers also

open the way to discover novel biochemical and

physiological characteristics that are unique properties

of these groups.

Keywords Microbial phylogeny � Bacterial

systematics � Molecular markers � Conserved indels �
Conserved signature proteins � Higher taxonomic

clades � Horizontal gene transfer

Introduction

Since the first bacterial genome of Haemophilus

influenzae was published in 1995, the number of

complete genomes has increased at an exponential

pace (Fleischmann et al. 1995; NCBI database 2011).

Even at the very beginning of genome sequencing

projects, the concept of ‘‘post-genomics era’’ was

anticipated, which indicated its expected big influence

on biological research (Gershon 1997; Fraser-Liggett

2005). Although it is only 15 years since the first
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genome was sequenced, the development of deep-

sequencing technologies has flooded the genome

databases with either pure-culture bacterial genomes

that have taxonomic names or mixtures of cultured and

uncultured microbes from certain environments/

niches (Venter et al. 2004; Tringe et al. 2005; Delong

et al. 2006; Xie et al. 2011). Hence, we are able to

explore the microbial community more deeply and

much faster from different perspectives including their

ecological diversity, niche adaptation, ability to pro-

duce diverse natural products, pathogenic potential,

presence in human microbiota, etc. (Dinsdale et al.

2008; Tringe et al. 2005; Pallen and Wren 2007;

Arumugam et al. 2011). All of these studies depend

upon and will greatly benefit from a sound framework

of microbial classification (i.e., microbial systematics)

and phylogeny.

As the genome sequencing data have accumulated,

many studies have been carried out to investigate the

phylogenetic relationships of different prokaryotes by

comparative genomics approaches; the most popular

of these methods include examining the gene order,

shared gene content, construction of supertrees, etc.

(Belda et al. 2005; Snel et al. 1999; Lathe et al. 2000;

Beiko et al. 2005; Ding et al. 2008; Ciccarelli et al.

2006). These studies certainly facilitate our under-

standing of microbial systematics in the light of

genome evolution (Koonin 2009; Kunin et al. 2005;

Philippe et al. 2005). However, the results from these

studies also challenge the present framework because

the prokaryotic genomes are found to be dynamic and

plastic, showing much more diversity than what we

knew from their phenotypic or other genotypic

characteristics such as the 16S rRNA gene sequences

(Gogarten et al. 2002; Snel et al. 2005; Lawrence and

Hendrickson 2005; Gogarten and Townsend 2005).

Especially with the large number of cases of horizontal

gene transfer (HGT) identified from genome

sequences, a Darwinian tree-like representation of

relationships between species has been questioned and

a network of species has been proposed (Doolittle

1999; Kunin et al. 2005). However, since the detection

of HGTs between species also depends upon the

current phylogenetic/systematic framework, a sound

understanding of the evolutionary relationships among

different species is essential to accurately determine

the incidence of HGTs. Before discussing the current

state of microbial systematics and some of the

important issues that needs to be understood in this

regard, it would be helpful to revisit the concept of

HGT in a little more detail and critical manner.

Influence of horizontal gene transfers on genome

and species evolution

To determine whether the HGTs truly diminish the

tree of life, two questions need be answered: (i) What

is the extent that HGTs affect the prokaryotic genomes

and (ii) whether a core genome still exists that is

significantly not affected by HGTs (Snel et al. 2005).

These two questions can be answered together. The

extent of HGT is currently hotly debated, and due to

different species sampling and detection methods/

standards, a bacterial genome is suggested to have 0 to

[20% genes obtained from outsources (Ochman et al.

2000; Nakamura et al. 2004; Ragan 2001). However,

among these alien genes, some have detected homo-

logues in other species so the transfer is evidenced,

whereas many other genes are only found in particular

genomes (Abby and Daubin 2007; Lerat et al. 2005).

These later genes constitute a large fraction of the

currently identified HGT products. However, due to

their lack of homologues in other species, it is quite

possible that such genes may have originated in those

specific genomes. A number of comparative genomic

studies have been carried out to carefully examine the

influence of HGT events. For example, Novichkov

et al. 2004 described a framework for identifying

orthologous sets of genes that deviate from a clock-

like model of evolution. For several hundred analyzed

orthologous sets representing three well-defined bac-

terial lineages, they found that 70% of the genes were

not affected by HGT, 15% of them showed anomalous

behavior due to lineage-specific acceleration of evo-

lution, while the remaining were probably caused by

HGTs (Novichkov et al. 2004). Kunin et al. analyzed a

165-genome dataset and found 4.7–5.2% of events to

be HGTs, 11.1–11.6% gene losses and 83.4–83.6%

vertical transfers (Kunin et al. 2005; Kunin and

Ouzounis 2003). Additionally, Beiko et al. 2005) have

performed a rigorous phylogenetic analysis of

[220,000 proteins from 144 prokaryotic genomes to

determine the contribution of gene sharing to current

prokaryotic diversity, and the inferred relationships

suggest a pattern of inheritance that is largely vertical

except among some closely related taxa and among

some species that live in similar environments .
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It is known that genes involved in translation and

transcription show fewer indications of transfers

(Koonin 2003). For example, the 31 orthologous

genes employed by Ciccarelli et al. 2006 for con-

struction of a universal phylogenetic tree are all

involved in translation (Ciccarelli et al. 2006; Oren

2010). These proteins are highly connected in the

cellular network, less exposed to immediate selective

pressure and thus less susceptible to homologous

replacement via HGT (Ragan and Beiko 2009; Aris-

Brosou 2005). Although some studies have detected

HGT events for some core genes, including the 16S

rRNA, such cases are very few and the number of

publications reporting them is countable (Gogarten

and Townsend 2005; Gogarten et al. 2002; Oren

2010). Besides, single-gene based trees are already

questioned and the current trend is to use a core set of

non-transferred or rarely transferred genes to track the

evolutionary history of prokaryotes (Ciccarelli et al.

2006; Williams et al. 2010; Gupta and Mathews 2010;

Horiike et al. 2009).

These studies indicate that the concept or definition

of HGT needs to be revised to take into consideration

the evolutionary processes by which genomes and new

species evolve. It is known that not all genes were

inherited from the last universal common ancestor of

life forms. Although the mechanisms by which new

genes evolve are not known, it is believed that gene

transfer is an important source of genome expansion

throughout the evolutionary process (Daubin and

Ochman 2004; Lerat et al. 2005). Gene transfer

provides the bacterial genome with a new set of genes

that helps it to explore and adapt to new ecological

niches (Kuo and Ochman 2009; Stackebrandt et al.

2002; Oren 2010). If the gene transfers occurred at a

deeper clade level and the new genes are retained by

all the descendants from the progenitor, then the gene

transfer events have likely contributed to the diver-

gence of the clade and the new genes are already

incorporated into the cellular protein interaction

network (Lerat et al. 2005; Narra et al. 2008; Ragan

and Beiko 2009). Besides, the genes acquired via

lateral gene transfer over time get ameliorated and

many of them exhibit little or no similarity to the

original genes and they come to resemble the native

genes with regard to characteristics such as their GC

content or codon usage (Lawrence and Ochman 1997;

Marri and Golding 2008; Koski et al. 2001). Thus,

these ‘‘new genes’’, which could have been acquired

by means of ancient gene transfers, actually record the

divergence of the clades or lineages. Importantly, after

introduction into the progenitor cell, these new genes

follow a vertical inheritance pattern, which is different

from the current concept of HGTs or LGTs. Hence, the

genes which are restricted to specific lineages and

passed on by vertical inheritance should not be

regarded as ‘‘horizontal’’ or ‘‘lateral’’ gene transfers.

Rather than randomly obscuring prokaryotic phylog-

eny, these genes actually promote and record the

divergence of the species via the introduction of new

genes at different evolutionary stages.

In summary, although the HGTs add an extra layer

of complexity to the study of species evolution, they

do not seriously affect reconstruction of the evolu-

tionary history of life as most of the genes are still

vertically inherited (Abby and Daubin 2007; Snel et al.

2005). Caution should also be exercised in extending

the concept of HGT to the evolution of novel genes, as

the mechanisms that give rise to them are not fully

understood. Additionally, the gene transfer events that

occur at different evolutionary stages tell us different

stories about the evolution of species.

Current issues in microbial systematics

Apart from the noise and complexity that is introduced

by HGTs in phylogenetic studies, there are many

critical issues in microbial systematics that are

currently not resolved. The most debated of these

issues is how to define a species (Konstantinidis et al.

2006; Staley 2006; Fraser et al. 2009; Oren 2010;

Stackebrandt et al. 2002). As a fundamental unit in the

hierarchy of prokaryote classification, the develop-

ment of a sound ‘‘species’’ concept is of particular

importance. Since 1987, bacterial strains exhibiting

[70% whole-cell DNA–DNA hybridization and

sharing at least one distinctive phenotype are consid-

ered to be members of the same species (Wayne 1988).

The above value for DNA–DNA hybridization

roughly corresponds to *97% rRNA sequence iden-

tity and this criterion is also commonly employed for

species identification purposes (Brenner et al. 2005;

Goris et al. 2007; Stackebrandt et al. 2002). However,

in many cases, different species and even genera are

found to exhibit[70% DNA–DNA similarity and yet

for practical reasons they are regarded as different

species or genera (Ludwig and Klenk 2005; Gevers
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et al. 2005; Oren 2010). Importantly, different strains

of the same species are also found to differ greatly in

terms of their genome sequences (Tettelin et al. 2005;

Lukjancenko et al. 2010; Alcaraz et al. 2010). A recent

detailed study on 44 Streptococcus pneumoniae

genomes indicated that while about 74% of the genes

were present in most strains, the remaining 21–32%

genes (non-core) were restricted to different clusters

(Donati et al. 2010). The sum of both core and non-

core genes from different strains of a given species is

now referred to as the ‘‘pan-genome’’ (Tettelin et al.

2008). The non-core genes are postulated to contribute

to functions such as niche adaptation, antibiotic

resistance and the ability to colonize new hosts (Kuo

and Ochman 2009; Narra et al. 2008; Coleman and

Chisholm 2010; Tettelin et al. 2008). Based upon their

branching in phylogenetic trees, genomic arrangement

and uniquely shared genes/proteins (Touchon et al.

2009; Liu et al. 1999; Gupta, unpublished results),

different strains of some species can be divided into a

number of distinct clades. This raises the questions

what taxonomic rank should be assigned to strains

from these clades and whether the current species

definition is too broad and masks the diversity that

exists within the prokaryotes. Although it has been

suggested that new methods should be applied to

define a prokaryotic species (Stackebrandt et al. 2002;

Staley 2006; Fraser et al. 2009), due to lack of reliable

means to define a species, no general agreement has

been reached in this regard.

In contrast to the species level where a formal,

although inadequate, definition exists, there are no

agreement upon criteria for defining the higher

taxonomic ranks within prokaryotes and all such rank

assignments are based upon almost entirely arbitrary

considerations (Stackebrandt 2006; Oren 2010;

Stackebrandt et al. 2002; Ludwig and Klenk 2005).

The arbitrariness of the present bacterial classification

is well illustrated by the example of the phylum

proteobacteria. The proteobacteria comprise the larg-

est group within prokaryotes accounting for nearly

50% of all cultured bacteria (Ludwig and Klenk 2005;

Maidak et al. 2001; Kersters et al. 2006; Gupta 2000b).

Based upon their branching in the 16S rRNA trees,

they are divided into five classes, named alpha-, beta-,

gamma-, delta- and epsilon-proteobacteria (Ludwig

and Klenk 2005; Maidak et al. 2001; Kersters et al.

2006; Garrity et al. 2005). Of these, alpha-, beta-, and

gamma-proteobacteria harbor approximately 12, 8,

and 26% of all cultured bacteria (Maidak et al. 2001).

The species from these groups can also be clearly

distinguished from each other and from all other

bacteria based upon large numbers of molecular

characteristics (Gupta 2000b, 2005, 2006; Gupta and

Sneath 2007; Gupta and Mok 2007; Gao et al. 2009;

Kersters et al. 2006; Ciccarelli et al. 2006). However,

despite their phylogenetic and molecular distinctness,

these large groups of bacteria are presently not

recognized as distinct phyla, whereas numerous other

poorly studied bacteria consisting of only few species

are recognized as separate phyla of bacteria.

In the current taxonomic scheme, based upon

branching pattern in the 16S rRNA trees, the relation-

ships among various higher taxonomic clades are also

generally not resolved. Thus, it is difficult to determine

how different groups are related to each other or how

they evolved from a common ancestor (Ludwig and

Klenk 2005; Woese 2006; Gupta and Griffiths 2002;

Gupta and Gao 2010). Additionally, for most of the

prokaryotic groups of higher taxonomic ranks, except

for their branching pattern in the phylogenetic trees,

no molecular, biochemical or physiological charac-

teristics are known that are specific for these groups

and can be used to distinguish them from all others.

Considering that systematics should ideally serve as

the foundation and guide map for microbiological

studies, in addition to indicating that a particular group

of prokaryotes form a distinct clade in phylogenetic

trees, it should be able to specify more of their

commonly shared and unique characteristics. Hence, it

is important to develop more reliable criteria to define

and delimit the higher taxonomic ranks within the

prokaryotes and also develop means to identify

biochemical or physiological characteristics that are

specific for different groups of prokaryotes. This

should lead to the development of a more compre-

hensive and reliable systematics of prokaryotes that

should be able to serve the guiding role in

microbiology.

Conserved indels and lineage-specific proteins

as novel tools for microbial systematics

The current unresolved issues regarding prokaryotic

phylogeny and systematics make it necessary to search

for novel characteristics that are unique to different

prokaryotic lineages and also record their divergence
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from common ancestor. The characteristics that are

ideally suited for such studies should meet the

following requirements: ‘‘These markers should be

homologous apomorphic characters that evolved only

once (synapomorphy) and not by convergence’’

(Stackebrandt 2006; Gupta 1998; Gupta and Griffiths

2002). Such markers should also not be affected or

minimally affected by factors such as multiple

changes at a given site, long-branch attraction effects,

differences in evolutionary rates between and among

species, HGTs, etc., which confound the inferences

from phylogenetic trees (Delsuc et al. 2005; Philippe

et al. 2005; Gupta 1998).

Conserved inserts and deletions (indels) in gene/

proteins sequences provide an important category of

rare genetic changes (RGCs) for understanding bac-

terial phylogeny (Gupta 1998; Rokas and Holland

2000; Delsuc et al. 2005; Gupta and Griffiths 2002).

Those indels which provide useful phylogenetic

markers are generally of defined size and flanked on

both sides by conserved regions to ensure their

reliability (Gupta and Griffiths 2002; Gupta 1998).

Because of the rarity and highly specific nature of such

changes, it is less likely that they could arise

independently by either convergent or parallel evolu-

tion (i.e., homoplasy) (Gupta 2000a; Rokas and

Holland 2000). Other confounding factors such as

differences in evolutionary rates at different sites or

among different species should also not affect the

interpretation of a conserved indel. Hence, when a

conserved signature indel (CSI) of defined size is

uniquely found in a phylogenetically defined

group(s) of species, the simplest explanation for this

observation is that the genetic change responsible for

this CSI occurred once in a common ancestor of this

group of species and then passed on vertically to the

various descendents. Because the presence or absence

of a given CSI in different species is not affected by

factors such as differences in evolutionary rates, CSIs

which are restricted to particular clade(s) have gener-

ally provided very good phylogenetic markers of

common evolutionary descent (Gupta 1998; Gupta

2003; Lake et al. 2007). Also, since genetic changes

leading to CSIs could be introduced at various stages

during evolution, it is possible to identify CSIs in

gene/protein sequences at different phylogenetic

depths corresponding to various higher taxonomic

groupings (e.g. phylum, order, family, genus and even

single species and subspecies levels) (Gupta 2001;

Gupta and Griffiths 2002; Gupta 1998; Gupta and Gao

2010; Gao and Gupta 2005; Ahmod et al. 2011). Such

CSIs, in turn, can provide well-defined markers for

identifying different taxonomic groups of bacteria in

molecular terms. Recent work from our lab has

identified a large number of CSIs that are restricted

to many higher taxonomic groups within the pro-

karyotes, such as: alpha-proteobacteria, gamma-

proteobacteria, epsilon-proteobacteria, Aquifiales,

Chlamydia, Cyanobacteria, Deinococcus–Thermus,

Bacteroidetes-Chlorobi, Actinobacteria, Thermoto-

gae, Archaea, etc. (Gupta 2009; Gao et al. 2009;

Griffiths and Gupta 2004a, 2004b, 2001, 2006;

Griffiths et al. 2005; Gupta 1998, 2004, 2010; Gupta

and Bhandari 2011; Gao and Gupta 2005; Gupta and

Shami 2011; Naushad and Gupta 2011). These newly

discovered CSIs provide useful markers for defining or

circumscribing the above prokaryotic groups in clear

molecular terms. Additionally, identified CSIs that are

commonly shared by species from a number of

different phyla provide valuable information regard-

ing the branching order and interrelationships among

different main groups of prokaryotes (Gupta 2001,

2003, 2000a, 2010, 2009; Gupta and Mok 2007). With

the greatly expanded microbial genome database, the

statistical study of large numbers of such RGCs

certainly represents a promising avenue for unraveling

the prokaryotic phylogeny.

Another type of RGC that can be useful for

taxonomic classification as well as for understanding

evolutionary relationships among different organisms

are whole proteins that are uniquely present in

particular groups or subgroups of prokaryotes but

not found anywhere else (Kainth and Gupta 2005;

Dutilh et al. 2008). Recent analyzes of genomic

sequences have indicated that such conserved signa-

ture proteins (CSPs), which are also referred to as

lineage-specific proteins, arise throughout the evolu-

tionary process of a bacterial lineage (Gao and Gupta

2007; Lerat et al. 2005; Gupta and Mathews 2010). A

vast number of lineage-specific proteins unique to

certain species, strain or even genome, which are also

called ‘‘ORFans’’, are introduced recently during

speciation or strain divergence (Daubin and Ochman

2004). Studies have shown that these proteins present

at the tips of the phylogeny evolve fast and are subject

to loss if not conferring advantages to the host (Narra

et al. 2008; Kuo and Ochman 2009). However, if the

lineage-specific proteins originate deep within a clade
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and are retained by all the descendents from the

progenitor, they are confined to the monophyletic

group (Gao et al. 2006; Dutilh et al. 2008; Gupta and

Gao 2010; Gupta and Mathews 2010). Thus, these

proteins are no more solitary ‘‘orphans’’, but they are

conserved signature proteins (CSPs), which are

uniquely shared by every daughter lineage of that

group and they provide useful molecular markers for

defining or distinguishing that group from other

bacteria (Gupta and Gao 2009; Gao et al. 2009; Gupta

and Gao 2010). Furthermore, based on a number of

CSPs that are specific to different lineages, it is

possible to infer their branching order or interrela-

tionship (Gupta and Mok 2007; Kainth and Gupta

2005; Gupta and Griffiths 2006; Gupta and Mathews

2010; Gupta and Gao 2010; Gupta 2010).

Similar to CSIs, comparative genomic studies have

been carried out on several major prokaryotic phyla to

identify CSPs that are unique to them, such as alpha-

proteobacteria, gamma-proteobacteria, epsilon-prote-

obacteria, Chlamydia, Cyanobacteria, Deinococcus–

Thermus, Bacteroidetes-Chlorobi, Actinobacteria,

Archaea, etc. (Kainth and Gupta 2005; Gao et al.

2009; Gupta 2006, 2009; Griffiths et al. 2006; Griffiths

and Gupta 2007; Gupta and Lorenzini 2007; Gupta

and Mok 2007; Gupta and Shami 2011). The identified

CSPs unique to different prokaryotic groups have

proved of great value in defining these major groups

and have also provided useful information regarding

the branching order of different lineages within them.

Interestingly, a majority of identified CSPs are of

hypothetical functions, which points to our lack of

knowledge regarding many of the building blocks in

the prokaryotic cell (Gupta and Gao 2010). Studies on

these lineage-specific CSPs that originate at deeper

clade levels are very meaningful for the following

reasons: First, because of their retention in all daughter

lineages, these proteins must perform important

functions in species from these clades. For example,

recent studies on the species distribution of key

lipopolysaccharide (LPS) biosynthesis enzymes

(Sutcliffe 2010) and a number of CSIs across different

bacterial phyla have provided important insight con-

cerning the evolution of the LPS-containing outer cell

membrane, which is a defining characteristic of

archetypical Gram-negative bacteria (Gupta 2011).

Second, due to their uniqueness, their functions likely

specify some distinctive characteristics that make the

clade different from other bacteria. Third, a thorough

understanding of their evolution as individual and

components in the protein interaction network should

provide insight into the mechanisms of genesis or

speciation of new bacterial species and clades (Daubin

and Ochman 2004; Kuo and Ochman 2009). Moreover,

it is arguable that maintenance of particular CSP/CSI in

a genome over countless generations is in itself a

significant phenotype, in the sense that it is the expressed

result of faithful replication under natural selection.

Clearly maintenance of these sequences (either of CSI or

of CSP) is likely to have phenotypic consequences, as

has been demonstrated for CSI in the Hsp60 and Hsp70

proteins of E. coli (Singh and Gupta 2009).

Future directions

In order to better understand microbial systematics, it

is important to map molecular characteristics such as

CSIs and CSPs on to the phylogenetic tree. These

markers not only provide additional evidence for the

genetic or phylogenetic relatedness of different pro-

karyotic groups, but also provide new targets/tools to

study the biology of these microbes. Although the

GenBank currently has [1,700 complete genomes

from different microbes, they are somewhat biased in

terms of taxonomic sampling toward bacterial taxa

that are either important pathogens or are important

from biotechnology standpoints. However, the recent

project of phylogeny-driven genomic encyclopedia of

bacteria and archeae (GEBA) (Wu et al. 2009; Klenk

and Goker 2010) should lead to sequencing of diverse

prokaryotic genomes that should enable identification

of more molecular markers for different groups and

also provide the necessary means to rigorously test the

specificity of these markers. The cultured bacteria or

archaea represent only about 1% of the total microbial

diversity (Amann et al. 1995; Delong and Pace 2001).

Although we do not have reliable means to study the

uncultured microbes, the metagenomics data from

different environments (Tringe et al. 2005; Xu 2006;

Turnbaugh and Gordon 2008; Gianoulis et al. 2009)

have opened up new windows to explore microbial

diversity in these environments. The CSIs and CSPs

that are specific for different prokaryotic groups

provide valuable tools for determining the presence

or absence of species related to these groups in

different metagenomic samples. The availability of

increasing numbers of genomic sequences covering
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the depth and breadth of prokaryotic species, in

conjunction with novel and more specific means to

identify different prokaryotic groups at various taxo-

nomic levels, such as CSIs and CSPs, bodes well for

the future prospects of developing a stable and

comprehensive foundation for microbial systematics.
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