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Multicopper oxidases (MCOs) are a family of enzymes

comprising laccases (EC 1.10.3.2), ferroxidases

(EC 1.16.3.1), ascorbate oxidase (EC 1.10.3.3), and

ceruloplasmin. This family in turn belongs to the

highly diverse group of blue copper proteins which

contain from one to six copper atoms per molecule

and about 100 to >1000 amino acid residues in the

single peptide chain [1]. MCOs have the ability to cou-

ple the oxidation of a substrate with a four-electron

reduction of molecular oxygen to water. The electron

transfer steps in these redox reactions are coordinated

in two copper centres that usually contain four copper

atoms. In a redox reaction catalyzed by an MCO, elec-

trons from the substrate are accepted in the mononu-

clear centre (type 1 copper atom) and then transferred

to the trinuclear cluster (one type 2 and two type

3 copper atoms), which serves as the dioxygen binding

site and reduces the molecular oxygen upon receipt of

four electrons. The type 1 copper is bound to the

enzyme by two histidine and one cysteine residue in

the T1 centre, whereas eight histidine residues in the

T2 ⁄T3 cluster serve as ligands for the type 2 and

type 3 copper atoms [2–5]. Based on the conservation

of the amino acid ligands, two consensus patterns

(G-X-[FYW]-X-[LIVMFYW]-X-[CST]-X8-G-[LM]-X3-

[LIVMFYW] and H-C-H-X3-H-X3-[AG]-[LM]) were
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A phylogenetic analysis of more than 350 multicopper oxidases (MCOs)

from fungi, insects, plants, and bacteria provided the basis for a refined

classification of this enzyme family into laccases sensu stricto (basidiomyc-

etous and ascomycetous), insect laccases, fungal pigment MCOs, fungal

ferroxidases, ascorbate oxidases, plant laccase-like MCOs, and bilirubin

oxidases. Within the largest group of enzymes, formed by the 125 basidi-

omycetous laccases, the gene phylogeny does not strictly follow the species

phylogeny. The enzymes seem to group at least partially according to the

lifestyle of the corresponding species. Analyses of the completely sequenced

fungal genomes showed that the composition of MCOs in the different spe-

cies can be very variable. Some species seem to encode only ferroxidases,

whereas others have proteins which are distributed over up to four differ-

ent functional clusters in the phylogenetic tree.

Abbreviations

ABTS, 2,2¢-azinobis(3-ethylbenzo-6-thiazolinesulfonic acid); DHN, 1,8-dihydroxynaphthalene; L-DOPA, 3,4-dihydroxyphenylalanine; LMCO,

laccase-like multicopper oxidase; MCO, multicopper oxidase.
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defined for the MCOs (PROSITE PDOC00076, http://

us.expasy.org/prosite/). Compared with other members

of the MCO family, ceruloplasmin, responsible for iron

homeostasis in vertebrates, is rather unusual, as it has

five to six copper atoms per molecule [6]. Therefore,

this enzyme will not be further discussed in this paper.

Laccases in the broader sense by far make up the

largest subgroup of MCOs, originating from bacteria,

fungi, plants, and insects. Laccase was first discovered

in the sap of the Japanese lacquer tree Rhus vernicifera

[7], hence the name. Subsequently, laccases were also

found in various basidiomycetous and ascomycetous

fungi and, until now, the fungal laccases account for

the most important group with respect to number and

extent of characterization.

Laccases were found in almost all wood-rotting

fungi analyzed so far [8]. It has become evident that

laccases can play an important role in lignin degrada-

tion [9] even though one of the strongest lignin degra-

ding species, Phanerochaete chrysosporium, does not

produce a typical laccase [10]. The precise function of

the enzyme in this process, however, is still poorly

understood [9,11]. Besides delignification, fungal lac-

cases have been associated with various organismal

interactions (intra- and interspecific) and developmen-

tal processes such as fruiting body formation [12,13],

pigment formation during asexual development [14,15],

pathogenesis [16–18], competitor interactions [19]. Lac-

cases of saprophytic and mycorrhizal fungi have also

been implicated in soil organic matter cycling, e.g. deg-

radation of soil litter polymers or formation of humic

compounds [20,21].

Several lines of evidence (capacity to oxidize lignin

precursors, localization in lignifying xylem cell walls,

higher expression in xylem compared to other tissues)

suggest the involvement of plant laccases in the lignifi-

cation process [22–25]. However, given the complexity

of the laccase gene families in plant species, additional,

so far not specified functions unrelated to lignin for-

mation have been proposed [26]. Due to the ferroxi-

dase activity of the MCO LAC2-2 from Liriodendron

tulipifera and expression studies of the Arabidopsis

thaliana laccase gene family, the term ‘laccase-like

multicopper oxidases’ or LMCOs was introduced in

order to account for their potential multiplicity of

functions [27,28]. All 17 of the A. thaliana LMCOs

were shown to be expressed and the expression pat-

terns suggested that LMCO function in A. thaliana

probably extends well beyond lignification [28].

In insects, laccases seem to play an important role in

cuticular sclerotization [29,30]. In Drosophila melano-

gaster, a role in the melanization pathway during the

insect’s immune response [31] and in Manduca sexta a

role in the oxidation of toxic compounds in the diet

and ⁄or in the iron metabolism has been proposed [32].

Laccases have only recently been discovered in bac-

teria and their classification and function are still con-

troversial. The first report of a bacterial laccase was

from the Gram-negative soil bacterium Azospirillum

lipoferum [33] and the enzyme was suggested to be

involved in melanization [34]. The Bacillus subtilis

endospore coat protein CotA is a laccase required for

the formation of spore pigment [35] and was recently

shown to have also bilirubin oxidase (EC 1.3.3.5)

activity [36]. Other bacterial MCOs like the copper

efflux protein CueO from Escherichia coli and the cop-

per resistance protein CopA from Pseudomonas syrin-

gae and Xanthomonas campestris were considered

pseudo-laccases due to the dependence of the 2,6-

dimethoxyphenol oxidation on Cu2+ addition [37].

This plethora of functions of the various laccases

implicates the capability of oxidizing a wide range of

substrates, which by the use of mediators (oxidizable

low-molecular-weight compounds) can even be greatly

extended [38]. Therefore, laccases are very interesting

enzymes for various biotechnological applications.

Most of the proposed uses for laccases are based on

the ability to produce a free radical from a suitable

substrate. The multifaceted consecutive secondary reac-

tions of the radicals are responsible for the versatility

of possible applications [39].

A novel MCO with weak laccase and strong ferroxi-

dase activity was identified in P. chrysosporium [10].

Ferroxidase activity was also detected in a heterolo-

gously expressed laccase from Cryptococcus neoformans

[40]. The role of ferroxidase has been analyzed exten-

sively in Saccharomyces cerevisiae. The yeast ferroxi-

dase Fet3p is a plasma membrane protein that, along

with the iron permease Ftr1p, is part of a high affinity

iron uptake system [41]. Next to its function in iron

metabolism, a protective role by suppressing copper

and iron cytotoxicity has been suggested [42].

Ascorbate oxidase catalyzes the oxidation of ascor-

bic acid to monodehydroascorbate. However, its spe-

cificity is not as strict, as it was shown to oxidize also

phenolic substrates typical for laccases [43]. Despite

extensive studies on structure, biochemistry, and

expression of ascorbate oxidase in plant cells, the phy-

siological roles remained uncertain [44]. Ascorbate

oxidase was suggested to modify the apoplastic redox

state and thereby regulate growth and defence [44]. De

Tullio et al. [45] proposed a function in dioxygen man-

agement during photosynthesis, fruit ripening, and

wound healing.

With the availability of genomic sequences, a multi-

tude of genes putatively coding for MCOs has been
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identified. However, from only a small part of these

genes the product has been identified or even charac-

terized. McCaig et al. [28] proposed to categorize plant

LMCOs on the basis of sequence similarity and phylo-

genetic analysis until specific physiological functions

are defined. They presented a classification of plant

LMCO sequences and, together with expression pro-

files, provided strong evidence that most LMCOs from

A. thaliana are not involved in lignification but may

play a role in iron or other metal metabolisms. In

order to characterize plant and fungal laccases into

distinct subgroups based on signature sequences,

basidiomycete laccases

ascomycete laccases

insect laccases
Cel NP 501502

fungal ferroxidases

Mgr Mco7
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Fig. 1. Neighbour joining tree of multicopper

oxidase amino acid sequences. Sequences

without accession number were derived

from the genome sequences (see Experi-

mental procedures). Bootstrap values are

from 500 replications, only values ‡ 50% are

shown (1) including enzymes involved in

melanin synthesis by the 1,8-dihydroxy-

naphtalene (DHN) pathway, and (2) including

two sequences from ascomycetes.
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Kumar et al. [46] analyzed over 100 laccase-like

sequences. Here we present phylogenetic analyses and

a classification of over 350 MCO sequences, including

laccases, ascorbate oxidases, ferroxidases, and other,

not clearly assigned proteins from the animal, plant,

fungal, and bacterial kingdom.

Results and discussion

MCO phylogenetic tree overview

After the different search and selection processes, a total

of 271 MCO amino acid sequences were obtained from

the NCBI GenBank. Another 90 sequences were

retrieved from the publicly available genomic sequences

of basidiomycetous and ascomycetous fungi (see Experi-

mental procedures), resulting in a total number of 361

sequences. The sequences cover various taxonomic

groups. The 258 fungal sequences make up more than

two thirds of all sequences. They were derived from 38

different basidiomycete, 30 ascomycete, and one zyg-

omycete species. Further, a total of 62 plant sequences

(from one gymnosperm, 12 dicotyledon angiosperms,

and two monocotyledon angiosperms), 12 animal (from

one nematode and four insect species), and 29 prokary-

otic sequences (from one archaea, 17 Gram-negative,

and six Gram-positive bacteria) were included in the

analysis. In order to analyze the similarities among these

sequences, we used the neighbour joining method with

different distance estimation models (see Experimental

procedures) to construct phylogenetic trees based on the

manually adjusted ClustalX alignment. Clades consis-

tent among trees were assigned and named according to

included sequences with known functions and ⁄or enzy-
matic characteristics (Fig. 1, only tree based on the JTT

model shown). Based on the main clusters we propose

the following classification of MCOs (see below): lac-

cases sensu stricto (basidiomycetous and ascomycetous),

insect laccases, fungal pigment MCOs, fungal ferroxid-

ases, ascorbate oxidases, plant LMCOs, bilirubin oxid-

ases. Nakamura and Go [47] recently presented a

comparison of blue copper proteins (including the

MCOs) and proposed an evolutionary scenario creating

the molecular diversity in this diverse assemblage of

proteins. Focusing on the MCOs only, our analysis

yielded a more resolved phylogeny of the MCO

sequences, providing the base for the (putative) func-

tional assignment of sequences.

One of the most obvious features of the tree was

that the laccase sensu stricto sequences clustered

according to the taxonomical association of the

corresponding species. The fungal laccases were clearly

separated in two clusters containing either exclusively

homobasidiomycete or filamentous ascomycete

sequences, respectively (Fig. 1). The former cluster

included all the well characterized basidiomycete lac-

cases (e.g. from Coprinopsis cinerea, Pleurotus ostrea-

tus, Pycnoporus cinnabarinus, Rhizoctonia solani,

Trametes sp., Fig. 2A, for references see Table 1)

referred to as bona fide laccases [48]. The latter

contained most of the reported ascomycete laccases

(from Aspergillus terreus [49], Botrytis cinerea [50],

Cryphonectria parasitica [18], Gaeumanomyces graminis

[51], Melanocarpus albomyces [52], Neurospora crassa

[53], and Podospora anserina [54], as well as several

previously undescribed sequences we deduced from

whole genome sequences (Fig. 2B). Similarly, all insect

sequences grouped together (Fig. 2C). Although the

enzymatic activity-sequence link has been established

for none of these animal sequences yet, expression data

suggest that some of the enzymes included here are

involved in cuticular sclerotization [32].

The fungal pigment MCO cluster included sequences

from filamentous ascomycetes, ascomycetous yeasts

and from basidiomycetes (Fig. 2D). It contained the

enzymes YA from Aspergillus nidulans and Abr2p from

A. fumigatus, both of which are required in conidial

pigment biosynthesis [14,15]. More specifically, Abr2p

was suggested to be involved in a DHN-melanin

(named for the pathway intermediate 1,8-dihydroxy-

naphthalene) biosynthesis pathway [15]. YA has been

named a laccase because of its ability to oxidize typical

laccase substrates such as p-phenylenediamines, pyro-

gallol, and gallic acid, however, no data on enzyme

kinetics are available [14].

The fungal ferroxidase cluster comprised sequences

from ascomycetous yeasts, filamentous ascomycetes

and basidiomycetes (Fig. 2E). It included the charac-

terized Fet3 ferroxidases from the yeasts Arxula adeni-

nivorans, Candida albicans, and S. cerevisiae [55–57]

and the sequence from gene abr1 neighbouring the

putative laccase gene abr2 in a gene cluster for conidial

pigment synthesis in Aspergillus fumigatus [15]. In the

neighbour joining tree based on p-distances, the ferr-

oxidase cluster included three additional sequences

(Ego_NP_984335, Fgr_Mco1, Mgr_Mco1) compared

to the PAM and JTT trees (not shown). These three

sequences belong to a grade of sequences whose group-

ing was not consistently supported between the differ-

ent trees. We marked them ‘ferroxidases ⁄ laccases’ (in

quotes to differentiate this grade from clusters ⁄ clades)
due to the presence of Mco1 from P. chrysosporium

[10] and a laccase from C. neoformans, shown to

polymerize 3,4-dihydroxyphenylalanine (l-DOPA) in

melanin synthesis [17,58]. These two enzymes were

shown to have both strong ferroxidase and weak

P.J. Hoegger et al. Phylogeny of multicopper oxidases
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laccase activities and are thus not typical laccases

[10,40]. This grade also included sequences from fila-

mentous ascomycetes (Fig. 1).

Plant and fungal ascorbate oxidase sequences

grouped together separate from the laccase or ferroxi-

dase clusters (Fig. 1). These sequences were further

divided into three closely related subclusters: one with

characterized and predicted plant ascorbate oxidases

[4,59,60], the second with predicted sequences from the

zygomycete Rhizopus oryzae, and the third with the so

far sole reported fungal ascorbate oxidase Asom from

Acremonium sp. HI-25 [61]. Further sequences in the

latter subcluster originated from other filamentous

ascomycetes and from the basidiomycete Ustilago may-

dis (Fig. 2F).

The cluster with the sequences of characterized lac-

cases or LMCOs from the plants Acer pseudoplatanus,

L. tulipifera, and Populus trichocarpa [23,62,63] inclu-

ded exclusively plant sequences (Fig. 2G).

The bacterial sequences grouped clearly separate

from almost all eukaryotic proteins. Two clusters were

obvious among the Eubacteria sequences, consisting of

copper resistance proteins (CopA, Fig. 2H) and cop-

per efflux proteins (CueO, Fig. 2J), respectively [64].

Only one Archaea and two fungal sequences were

among the eubacterial sequences: the undescribed

MCO from the hyperthermophilic Pyrobaculum aero-

philum, the bilirubin oxidase from the ascomycete

Myrothecium verrucaria [65], and the closely related

phenol oxidase from the ascomycete Acremonium

murorum [66]. The two fungal sequences belong to the

third cluster among the bacterial sequences assigned

as bilirubin oxidases (Fig. 2I) due to the correspond-

ing activities described for CotA from B. subtilis [36]

and bilirubin oxidase from M. verrucaria [65]. The lat-

ter enzyme is a MCO oxidizing bilirubin to biliverdin,

but also typical laccase substrates like ABTS [2,2¢-
azinobis(3-ethylbenzo-6-thiazolinesulfonic acid)] or

syringaldazine [67]. It was found in a screen of micro-

organisms for decolourization of urine and faeces

(containing bilirubin) in raw sewage [68]. The biologi-

cal role of bilirubin oxidase activity, however, is not

known. Biliverdin is the chromophore of bacteriophyt-

ochromes, homologues of which were found in fungi,

and it is also a precursor molecule in chromophore

synthesis of plant and cyanobacterial phytochromes

[69,70]. Due to the lack of experimental data, how-

ever, any connection between the chromophores (syn-

thesis or degradation) and bilirubin oxidase remains

purely speculative.

Fig. 2. Details of clusters from Fig. 1. Sequences without accession number were derived from the genome sequences (see Experimental

procedures). Bootstrap values are from 500 replications, only values ‡ 50% are shown. (A) Basidiomycete laccases, (B) ascomycete lac-

cases, (C) insect laccases, (D) fungal pigment MCOs (melanin DHN), (E) fungal ferroxidases, (F) fungal and plant ascorbate oxidases, (G)

plant LMCOs, (H) CopA (copper resistance), (I) bilirubin oxidases, and (J) CueO (copper efflux). Asterisks in (E) mark the ferroxidases where

the corresponding genes are arranged in a mirrored tandem with an iron permease homologue. Note: Cgo_Mco3, Clu_Mco2, Ctr_Mco1,

Ctr_Mco2, and Ctr_Mco3 with frame shifts in the genomic sequences. Species codes: Aad, Arxula adeninivorans; Aae, Aquifex aeolicus;

Aau, Auricularia auricula-judae; Abi, Agaricus bisporus; Afu, Aspergillus fumigatus; Aga, Anopheles gambiae; Amu, Acremonium murorum;

Ani, Emericella nidulans; Apo, Auricularia polytricha; Aps, Acer pseudoplatanus; Asp-HI, Acremonium sp. HI-25; Ate, Aspergillus terreus; Ath,

Arabidopsis thaliana; Bci, Botryotinia fuckeliana; Bha, Bacillus halodurans; Bpe, Bordetella pertussis; Bsu, Bacillus subtilis; Cal, Candida albi-

cans; Cci, Coprinopsis cinerea; Cco, Coprinellus congregatus; Ccr, Caulobacter crescentus; Ccv-EN, Cucurbita cv. Ebisu Nankin; Cel, Caenor-

habditis elegans; Cga, Coriolopsis gallica; Cgl, Candida glabrata; Cgo, Chaetomium globosum; Cgu, Candida guilliermondii; Cim, Coccidioides

immitis; Cje, Campylobacter jejuni; Cla, Colletotrichum lagenarium; Clu, Candida lusitanae; Cma, Cucurbita maxima; Cme, Cucumis melo;

Cne, Filobasidiella neoformans; Cpa, Cryphonectria parasitica; Csa, Cucumis sativus; Csu, Ceriporiopsis subvermispora; Ctr, Candida tropical-

is; Dha, Debaryomyces hansenii; Dme, Drosophila melanogaster; Eco, Escherichia coli; Ego, Ashbya gossypii; Fgr, Gibberella zeae; Ftr, Funa-

lia trogii; Fve, Flammulina velutipes; Gar, Gossypium arboreum; Ggg, Gaeumannomyces graminis var. graminis; Ggt, Gaeumannomyces

graminis var. tritici; Glu, Ganoderma lucidum; Gma, Glycine max; Kla, Kluyveromyces lactis; Led, Lentinula edodes; Lpe, Lolium perenne;

Ltu, Liriodendron tulipifera; Mal, Melanocarpus albomyces; Mbb, Mycobacterium bovis ssp. bovis; Mgr, Magnaporthe grisea; Mme, Marino-

monas mediterranea; Mse, Manduca sexta; Mtr, Medicago truncatula; Mtu, Mycobacterium tuberculosis; Mve, Myrothecium verrucaria; Ncr,

Neurospora crassa; Nta, Nicotiana tabacum; Oih, Oceanobacillus iheyensis; Osa, Oryza sativa (japonica cultivar-group); Pae, Pyrobaculum

aerophilum; Pan, Podospora anserina; Pbt, Populus balsamifera ssp. trichocarpa; Pch, Phanerochaete chrysosporium; Pci, Pycnoporus cinna-

barinus; Pcl, Polyporus ciliatus; Pco, Pycnoporus coccineus; Per, Pleurotus eryngii; Phy, Pimpla hypochondriaca; PM1, Basidiomycete PM1;

Pos, Pleurotus ostreatus; Ppu, Pseudomonas putida; Pra, Phlebia radiata; Pru, Panus rudis; Psa, Pycnoporus sanguineus; Psc, Pleurotus

sajor-caju; Psp, Pleurotus sapidus; Psy, Pseudomonas syringae; Pta, Pinus taeda; Rca, Rhodobacter capsulatus; Ret, Rhizobium etli; Rmi,

Rigidoporus microporus; Ror, Rhizopus oryzae; Rsc, Ralstonia solanacearum; Rso, Thanatephorus cucumeris; Sce, Saccharomyces cerevisi-

ae; Sco, Schizophyllum commune; Sla, Streptomyces lavendulae; Spo, Schizosaccharomyces pombe; Stm, Salmonella typhimurium; Sty,

Salmonella typhi; Thi, Trametes hirsuta; Tpu, Trametes pubescens; Tsp420, Trametes sp. 420; Tsp-AH, Trametes sp. AH28-2; Tsp-C30,

Trametes sp. C30; Tsp-I62, Trametes sp. I-62; Tth, Thermus thermophilus; Tts, Trachyderma tsunodae; Tve, Trametes versicolor; Tvi,

Trametes villosa; Uma, Ustilago maydis; Vvo, Volvariella volvacea; Xca, Xanthomonas campestris; Xfa, Xylella fastidiosa; Yli, Yarrowia lipolyti-

ca; Ype, Yersinia pestis.
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Fungal MCO multigene families

The composition of the MCO arsenal of different

fungal taxonomic groups seems to be quite variable.

Considering only complete fungal mco gene families,

i.e. where whole genome sequences are available, half

of the basidiomycete and filamentous ascomycete

sequences (41 out of 84 total sequences) belong to the

laccase sensu stricto clusters (Table 2). The other

sequences of both basidiomycetes and filamentous

ascomycetes are distributed over the fungal pigment

MCOs, ferroxidases, and ascorbate oxidases clusters or

belong to no cluster. In contrast, MCOs from the asc-

omycetous yeasts belong almost all to the ferroxidases.

According to their grouping in the tree, four of the five

MCOs from the zygomycete R. oryzae seem to be

ascorbate oxidases.

The ferroxidases are the best represented group,

being present in 19 of the 22 fungal genomes analyzed

here (Table 2). In S. cerevisiae, the ferroxidase Fet3p

A Tve B35883
Tsp-AH AAW28933 lacA
Thi Q02497
Tve A35883 laccase A
Thi AAA33104
Tsp-I62 AAB63444 Pox2
Tsp-I62 AAQ12269 Pox2
Thi AAL89554 072-1
Tpu AAM18407 Lap2

Tve AAL93622 laccase III
Tve CAA77015 Lcc2
Tve AAL07440 Lac1
Tvi Q99044 LCC1
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and the iron permease Ftr1p physically interact with

each other to form a multicomponent system for high

affinity iron uptake [71]. Interestingly, the three species

that do not have a ferroxidase (C. cinerea, A. nidulans,

and Coccidioides immitis) also lack homologues of the

iron permease gene ftr1, whereas the other 19 species

have at least one gene coding for a putative Ftr1p as

determined by Blast searches (Table 2). Furthermore,

in the filamentous species and the yeasts Yarrowia li-

polytica and Schizosaccharomyces pombe, at least one

of the fet3 homologues is arranged in a mirrored tan-

dem with the ftr1 homologue (Table 2, Fig. 2E), i.e.

the putative start codons are less than 5 kb apart and

they are divergently transcribed. Such an arrangement

could indicate a common regulation and function of

the genes in iron metabolism as it was proposed for

the fet3 ⁄ ftr1 homologues of S. pombe or P. chrysospo-

rium [72,73]. Thus, the presence of ftr1 homologues

only in the fungal genomes that also have a ferroxidase

suggest that at least one of the ferroxidases in each of

those species may play a similar role as in S. cerevisiae.

In addition to the reductive pathway involving

Fet3p ⁄Ftr1p, many fungi also developed another high

affinity mechanism to accumulate iron, namely the

siderophore-dependent pathway [74]. The presence

of homologues of the sid1 or sidA genes (Table 2),

encoding a l-ornithine-N5-monooxygenase catalyzing

the first step in hydroxamate siderophore biosynthesis

in U. maydis and A. nidulans [75], respectively, suggests

that the species lacking ferroxidases use only this alter-

native pathway for their (high affinity) iron uptake.

Evolution of basidiomycetous laccases

In order to understand more about the evolution of

the basidiomycetous laccases, we subjected all

sequences from the basidiomycete laccase cluster to a

more stringent analysis (see Experimental procedures).

The clustering of the sequences in the NJ tree does not

strictly follow taxonomical relationships of the species

they were derived from (Fig. 3). Similar subclusters as

in the NJ tree were observed in the tree generated by

the maximum likelihood method (not shown). The

arrangement of the sequences suggests that clustering

Table 2. Number of sequences from complete fungal mco multigene families in the different clusters and presence of homologues of repre-

sentative genes of the high affinity iron uptake pathways.

Clustera

Basidiomycetes

Filamentous

ascomycetes Ascomycetous yeasts Zygomycete

Cci Cne Pch Uma Ani Ncr Fgr Mgr Cgo Cim Ego Sce Cal Cgl Cgu Clu Ctr Kla Dha Yli Spo Ror

Total MCOs 17 6 5 6 7b 10 13 11 7 2 3 3 5 3 3 3 3 3 3 3 1 5

Basidiomycete laccases 17

Ascomycete laccases 2 8 5 4 4 1

Fungal pigment MCOs

(melanin DHN)

2 3 3 2 1 1 1

Fungal ferroxidases 4 1 1 2 2 2 2 2 2 5 2 2 2 3 2 2 3 1 1

Fungal and plant ascorbate

oxidases

1 2 1 1 1 4

Not in any cluster 2 4 2 2 2 1 1 1 1 1

Genes of high affinity iron

uptake pathways

ftr1 homologue(s) – + + + – + + + + – + + + + + + + + + + + +

ftr1 homologue(s) clustered

with MCOsc

– 2 1 1 – 1 2 1 1 – – – – – – – – – – 1 1 1

sid1 ⁄ sidA homologues + – – + + + + + + + – – – – – – – – – – + –d

aCluster according to phylogenetic tree in Fig. 1. For abbreviations, see Fig. 2. bNot including one MCO lacking the L1 signature sequence in

the predicted sequence. cSee Fig. 2E. dInstead of the hydroxamate siderophores typical for fungi, zygomycetes produce siderophores of the

carboxylate group [75].

Fig. 3. Neighbour joining tree of basidiomycete laccases based on realigned sequences. Putative allelic sequences were omitted. Bootstrap

values are from 500 replications; only values ‡ 50% are shown. Wd, wood-decaying (including uncharacterized Trametes sp. C30 (formerly

misidentified as Marasmius quercophilus [104]), Trametes sp. 420, and basidiomycete PM1 isolated from wastewater but shown to be ligni-

nolytic [94]); ld, litter-decomposing; pp, plant pathogen. Circled numbers refer to characterized laccases in Table 1, asterisks indicate charac-

terized laccases mentioned in the discussion. Dashed line indicates border of upper and lower part of the tree as discussed in the text. The

bar diagram shows calculated pI values.
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Tve B35883
Thi Q02497
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Pci AAG13724 Lac1
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Tsp-420 AAW28937 lacB
Tvi Q99049 LCC3
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is at least in part according to the function of the

respective enzymes. The laccases in the upper part of

the tree beginning with Coriolopsis gallica Lcc1 are all

from typical wood decay species and this group may

be specific to wood degradation. In the lower part of

the tree, some sequences from the same species were

found among different subclusters. This could be

explained by, within the same species, the possible

variability in demands on oxidative enzymes causing

the paralogous laccase copies to diversify. The phylo-

genetic analysis clearly supports the presence of

multiple laccases in the ancestors of these species that

have been maintained during the speciation and diver-

sification of the Homobasidiomycete fungi.

Evidence for different functions of the various lac-

cases is provided by expression studies and biochemi-

cal characterizations of different members from laccase

multigene families. Unfortunately, the sequence-

enzyme link has been established only for a few lac-

cases so far (Table 1). Most information is available

on laccases from typical white rot fungi by which the

enzymes are thought to be involved in lignin degrada-

tion. Laccase LAC1 and LAC2 from Trametes sp. C30

are well separated from each other on the NJ tree

(Fig. 3). Whereas LAC1 is constitutively produced in

liquid malt extract medium, LAC2 synthesis is induced

by the addition of copper and p-hydroxybenzoic acid

[76]. Further, LAC2 has a redox potential of 0.56 V

compared to 0.73 V of LAC1 [77]. Due to the differ-

ences in expression pattern and biochemical properties

of the enzymes, Klonowska et al. [77] suggested differ-

ent physiological roles for these two enzymes. Expres-

sion of the lcc1 gene from Trametes villosa could be

induced 17-fold by addition of 2,5-xylidine to the

liquid culture, whereas lcc2 was not induced but pre-

sent at a constitutive level [78]. Lcc1 has a pI value of

3.5, an optimal pH for ABTS of 2.7 and for syringald-

azine of 5–5.5. The properties for Lcc2 are quite differ-

ent with a pI value of 6.2–6.8, optimal pH for ABTS

of 6 and for syringaldazine of 5–5.5 [78]. Lcc2 clus-

tered with a group of five laccases with predicted pI

values of 5.6–6 (Fig. 3), all higher than the average for

all basidiomycete laccases at 5.2. It was suggested that

the surface charge (directly correlated to pI values) on

laccases might affect catalytic activity towards phenolic

substrates whose oxidation accompanies proton release

[67]. In fact, T. villosa Lcc2 activity dropped down to

15% of its optimal activity at pH 4 whereas Lcc1 still

retained 50–60% [78]. Because of its differences in

expression and enzymatic properties, it is likely that

Lcc2 functions under different physiological or envi-

ronmental conditions than Lcc1. Interestingly, Lcc2 is

the only enzyme among all MCOs analyzed here,

except for some more heterogeneous bacterial enzymes,

which is lacking a highly conserved aspartate residue

at the 13th position of the L1 signature sequence as

defined by Kumar et al. [46]. Instead of the aspartate,

Lcc2 has a glutamate residue. It was shown recently

that the Asp serves as a proton donor in M. verrucaria

bilirubin oxidase [79]. Point mutations at this site

showed that the presence of a carboxyl group is

required, although the enzymatic activity of the

Glu-mutant of bilirubin oxidase was reduced to 46%

[79]. In the case of T. villosa Lcc2, the Glu may be an

adaptation to higher pH environments as its carboxyl

group shows different proton dissociation properties

compared to the one from Asp.

Complex lignin-like compounds such as coal-derived

humic acids increased P. cinnabarinus lcc3–1 but not

lcc3–2 transcript levels [80]. pox1 and pox2 transcrip-

tion in Trametes sp. I-62 was induced at different

growth stages by the lignin degradation product verat-

ryl alcohol, whereas pox3 transcripts remained con-

stant. On the other hand, the latter gene seemed to be

carbon catabolite repressed [81]. These examples sug-

gest different roles for the members of the laccase fam-

ilies during the lifecycle of the organism.

Further evidence that the clustering at least partially

reflects the function was obtained by a phylogenetic

analysis using partial laccase sequences from the asco-

mycetes Xylaria sp. and Hypoxylon sp. [82]. The

sequences from the xylariaceous ascomycetes were

clustering among those from wood-decaying basidio-

mycetes (data not shown). Compared to most other

ascomycetes, xylariaceous fungi seem to be capable of

lignin mineralization [82–84]. Therefore, the close simi-

larities of the laccases may be based on the same pre-

sumed function as for those in the wood-decaying

basidiomycetes.

Next to lignin degradation, other biological roles for

laccases have been described (e.g. involvement in dif-

ferent developmental processes, see above) and the

close similarity of laccases from fungi occupying differ-

ent niches may be due to a shared function independ-

ent of the ecological niche. This may be the case for

the cluster involving the laccases from the litter-decom-

posing A. bisporus (LCC1 and LCC2) and C. cinerea

(Lcc16 and Lcc17), the wood-decaying P. ostreatus

(POXA3) and Pleurotus sajor-caju (Lac3), and the her-

baceous plant pathogen R. solani (LCC1 to LCC4).

Compared to other members of the P. sajor-caju lac-

case gene family (lac1, lac2, and lac4), lac3 is constitu-

tively expressed and not inducible by nutrient nitrogen

and carbon, copper, manganese, and several different

aromatic compounds [85]. P. ostreatus POXA3 is dif-

ferentially regulated at the protein level. The protease
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PoS1 is involved in the activation of POXA3, whereas

POXA1b was degraded in presence of PoS1 and

POXC was not affected [86]. Furthermore, consider-

able differences in their enzyme kinetics suggest differ-

ent substrate specificities (Table 1). Neither expression

data nor enzyme properties are yet available for the

C. cinerea Lcc16 and Lcc17, making up their own sub-

family among the 17-member multigene family of the

species (Kilaru et al., unpublished results). As the only

sequences in the basidiomycete cluster, Lcc16 and

Lcc17 have a glutamate residue (E191 and E192,

respectively) which otherwise is only present among

sequences from the ferroxidase cluster and the ferroxi-

dase ⁄ laccase grade and four sequences outside of the

main clusters. This Glu is conserved in yeast ferroxid-

ases and was shown to be essential for activity of

Fet3p from S. cerevisiae [87]. As C. cinerea does not

have a ftr1 homologue required for a high affinity iron

uptake (see above), Lcc16 and Lcc17 may play a cyto-

protective role as suggested by Stoj and Kosman [42].

Conclusion

The classification of enzymes from the MCO family

according to enzymatic activities in many cases is a

challenging task due to the wide and overlapping sub-

strate specificities of most members. The present phy-

logenetic analysis of amino acid sequences of over

350 MCOs provides a valuable additional means to

categorize enzymes in this family. The detailed analy-

sis of basidiomycetous laccases suggested that cluster-

ing of the sequences was at least partially according

to the function of the respective enzymes. Therefore,

we conclude that these analyses will be helpful in

evaluating the function of yet uncharacterized

enzymes. Nevertheless, detailed and comparable bio-

chemical characterizations of more MCOs are now

needed in order to refine potential predictions based

on our classification.

Experimental procedures

The NCBI GenBank database was mined by BlastP

searches with different multicopper oxidase sequences

(P. ostreatus Q12739, Trametes versicolor A35883, P. cinna-

barinus AAG09231, Lentinus edodes BAB83132, R. solani

S68120, C. neoformans A36962, N. crassa KSNCLT, C. alb-

icans CAA70509, Glycine max AAM89257). More

sequences were obtained by using the BLink option from

GenBank in entries identified from published reports. In

addition to the GenBank sequences, we deduced further

sequences from the publicly available genome sequences

of P. chrysosporium (http://www.jgi.doe.gov/whiterot/),

A. nidulans, Candida guilliermondii, Candida lusitanae, Can-

dida tropicalis, Chaetomium globosum, C. immitis, C. cine-

rea, C. neoformans Serotype A, Fusarium graminearum,

Magnaporthe grisea, N. crassa, R. oryzae, and U. maydis

(all from http://www.broad.mit.edu/annotation/) by tblastn

searching and annotating by hand. Sequences were selected

for the presence of the four conserved Cu-oxidase consen-

sus patterns typical for the MCOs (see above). Only com-

plete sequences were kept for further analyses. Proteins that

could not be aligned over extended regions (e.g. MnxG

from Bacillus SG-1) or lacking considerable stretches of

sequence (e.g. EpoA from Streptomyces coelicolor and

SLAC from Streptomyces griseus defined as two-domain

multicopper blue proteins by Nakamura and Go [47]) were

excluded. When such sequences were included initially, the

alignment had to be restricted to the most conserved parts

of the sequences because of ambiguity in the alignment.

This restriction, however, also caused a reduction of the

resolution of our phylogenetic analysis (not shown).

Redundant sequences, i.e. sequences from the same species

with 100% identity were also removed. Because of the lack

of available information, we could not differentiate between

allelic and nonallelic sequences and therefore kept all

sequences with identities smaller than 100%.

For phylogenetic analysis of all MCOs, an alignment was

created with clustalx Version 1.81 (http://www-igbmc.

u-strasbg.fr/BioInfo/ClustalX/Top.html) using the default set-

tings for multiple sequence alignments. The obtained align-

ment was adjusted manually with genedoc Version 2.6.002

(http://www.psc.edu/biomed/genedoc/). Based on this align-

ment we constructed phylogenetic trees with mega Version

3.1 (http://www.megasoftware.net/) by the neighbour join-

ing method using three different distance estimation models

(p-distances, Dayhoff or PAM, Jones-Taylor-Thornton or

JTT). Bootstrapping was carried out with 500 replications.

The large dataset prevented the reasonable application of

other phylogenetic inference methods (e.g. maximum likeli-

hood based).

For the more detailed phylogenetic analysis of the basidi-

omycete laccases, a new alignment only including the

sequences from the basidiomycete cluster from the MCOs

tree was created. After manual adjustments, only conserved

regions, i.e. where the assignment of positional homology

was possible, were used for tree construction, all other

regions were masked (excluded). Groups of very similar

sequences (p-distances <5%) were reduced to one represen-

tative sequence for better visualization. A NJ tree was con-

structed using the JTT substitution-rate matrix in mega.

Bootstrapping was performed with 500 replications. For

further evaluation of the tree, the maximum likelihood

method was used to generate another tree using the proml

program from the phylip package Version 3.63 (http://

evolution.genetics.washington.edu/phylip.html). The JTT

model for amino acid substitution was chosen and

N. crassa laccase KSNCLO was used as an outgroup. Tree

P.J. Hoegger et al. Phylogeny of multicopper oxidases

FEBS Journal 273 (2006) 2308–2326 ª 2006 The Authors Journal compilation ª 2006 FEBS 2321



topology was visualized using treeviewx Version 0.5.0

(http://darwin.zoology.gla.ac.uk/�rpage/treeviewx/index.html).

Analysis with the partial sequences from Xylaria sp. and

Hypoxylon sp. [81]. was performed by creating an align-

ment using only the corresponding region from all MCO

sequences spanning the segment from the L1 (HWHG...)

to the middle of the L2 signature sequence (. . .WYHSH)

according to Kumar et al. [46]. A NJ tree (p-distances)

based on this alignment was constructed with mega.

Fungal genomes were searched for the presence of homo-

logues of representative genes of the high affinity iron

uptake pathways in the NCBI GenBank Genome database

using the tblastn option. Protein query sequences were

S. cerevisiae Ftr1p (Acc. No. NP_011072) and Arn1p

(NP_011823), U. maydis Sid1 (P56584), and A. nidulans

SidA (AAP56238).
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