
Methanogenic archaea are a phylogenetically diverse 
group of strictly anaerobic Euryarchaeota with an 
energy metabolism that is restricted to the formation of 
methane from CO2 and H2, formate, methanol, meth-
ylamines and/or acetate1–5. Despite this restriction, 
these organisms have a quantitatively important role 
in the global carbon cycle (FIG. 1). It is estimated that 
approximately 1 billion tons (1 giga ton) of methane 
per year is formed globally by methanogenic archaea 
in anoxic environments, such as freshwater sediments, 
swamps, paddy fields, land fills and the intestinal tracts 
of ruminants and termites4. This means that approxi-
mately 2% of the net CO2 that is fixed annually into 
biomass by photosynthesis (70 giga tonnes of carbon 
per year) ends up primarily as methane.

Methanogenesis from the biomass in the anoxic 
ecosystems that are mentioned above is catalysed by 
a syntrophic association between anaerobic bacteria, 
protozoa and/or anaerobic fungi, and syntrophic bac-
teria, acetogenic bacteria and methanogenic archaea 
(FIG. 1). The anaerobic bacteria, protozoa and fungi 
(mainly present in the rumen of ruminants) hydrolyse 
biopolymers to monomers and lipids to glycerol and 
long-chain fatty acids, and ferment these, together 
with syntrophic bacteria, to acetic acid, CO2 and H2 
(Refs 6,7). These are the sole fermentation products 
only when polymer hydrolysis is the rate-limiting step 

in methanogenesis from biomass and when the H2 con-
centration is kept below 10 Pa by methanogenic archaea 
(reaction 1, see Box 1)8–10 and/or acetogenic bacteria  
(2 CO2 + 4 H2 → CH3COO– + H+ + 2 H2O; ∆Go′ equals 
–95 kJ per mole)11 (see BOX 1 for details of the calcula-
tion of ∆Go′). Because the free energy change (∆G) of 
acetogenesis from H2 and CO2 increases with increas-
ing H2 concentration, increasing pH and decreasing 
temperature, acetogenic bacteria preferentially chan-
nel H2 and CO2 into acetic acid synthesis at high H2 
concentrations, a pH of more than 7 and low tempera-
tures. By contrast, at low H2 concentrations, a pH of 
less than 7 and high temperatures, acetogenic bacteria 
channel acetic acid into H2 and CO2 formation8,11,12. 
The methanogens then finally convert acetate, H2 and 
CO2 to methane13. In ruminants and termites, the acetic 
acid that is formed by fermentation is resorbed from 
the intestinal tract and used by the host as an energy 
source. In the intestinal tract, methanogens that can 
grow on H2 and CO2 or formate are mainly found14,15.

Methane is a major end product of anaerobic bio-
mass degradation only in anoxic environments where 
the concentrations of sulphate, nitrate, Mn(IV) or 
Fe(III) are low. In the presence of these electron accep-
tors, methanogenesis is out-competed by anaerobic 
respiration, mainly for thermodynamic reasons. Thus, 
in the upper layer of marine sediments, where the  
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A nutritional situation in which 
two or more organisms 
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capabilities to catabolize a 
substance that cannot be 
catabolized by either one of 
them alone.
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Abstract | Most methanogenic archaea can reduce CO2 with H2 to methane, and it is 
generally assumed that the reactions and mechanisms of energy conservation that are 
involved are largely the same in all methanogens. However, this does not take into account 
the fact that methanogens with cytochromes have considerably higher growth yields and 
threshold concentrations for H2 than methanogens without cytochromes. These and other 
differences can be explained by the proposal outlined in this Review that in methanogens 
with cytochromes, the first and last steps in methanogenesis from CO2 are coupled 
chemiosmotically, whereas in methanogens without cytochromes, these steps are 
energetically coupled by a cytoplasmic enzyme complex that mediates flavin-based 
electron bifurcation.
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sulphate concentration is usually high (near to 30 mM), 
methanogenesis is restricted to substrates such as meth-
ylamines (glycine–betain fermentation products) that 
generally cannot be metabolized by sulphate-reducing 
bacteria.

FIGURE 1 shows that methane can be oxidized to 
CO2 by microorganisms not only aerobically but also 
anaerobically; the most dominant anaerobic process 
is the anaerobic oxidation of methane (AOM) with 
sulphate16. AOM usually occurs when methane is the 
only available electron donor and the concentration 
of suitable electron acceptors is high, which is the case 
in marine sediments that are located directly above 
methane hydrates (high sulphate concentrations) or 
organic-rich freshwater sediments that contain high 
concentrations of nitrate17. Interestingly, AOM with 
sulphate involves archaea that are closely related to 
methanogens containing cytochromes, and even more 
interestingly, AOM with sulphate seems to involve the 

nickel-containing enzyme methyl-coenzyme M reduct-
ase18,19, which catalyses the methane-forming step in all 
methanogenic archaea20–24.

This Review focuses on the energy metabolism of 
methanogenic archaea that grow on H2 and CO2, with 
an emphasis on the differences between methanogens 
with and without cytochromes. We first describe the 
differences in the electron-carrier apparatus that are 
reflected in differences in growth yields (YCH4; the 
amount of dried cells in grams (g) per mole of meth-
ane), ATP gains (moles of ATP per mole of methane) 
and H2 threshold concentrations. We then outline how 
methanogens with and without cytochromes conserve 
energy during growth on CO2 and H2, and highlight 
how in methanogens with cytochromes, the first and 
last steps in methanogenesis from CO2 are coupled 
chemiosmotically, whereas the available evidence indi-
cates that in methanogens without cytochromes, these 
steps are energetically coupled by a cytoplasmic enzyme 

Figure 1 | Methane as an intermediate in the global carbon cycle. Continuous arrows indicate a reaction and dashed 
arrows indicate diffusion and/or convection. In anoxic environments (for example, freshwater sediments, swamps, paddy 
fields, land fills and the intestinal tracts of ruminants and termites), approximately 1 giga ton (Gt) of methane (1015 g) is 
formed per year from acetate, CO2 and H2 through the metabolic activity of methanogenic archaea. Almost the same 
amount of methane is released into the environment from melting methane hydrates. From the 2 Gt of methane that is 
produced per year, ~0.6 Gt is oxidized to CO2 by aerobic bacteria, ~1 Gt is oxidized by anaerobic archaea and ~0.4 Gt 
escapes into the atmosphere. Another 0.2 Gt per year is released into the atmosphere from other sources, such as gas-pipe 
leakages and the burning of biomass. In the atmosphere, most of the methane is photo-oxidized to CO2. Only 0.03 Gt per 
year is removed from the atmosphere by aerobic bacteria that live in soils and water. The concentration of methane in the 
troposphere has increased over the past 100 years from 0.9 to 1.8 parts per million (ppm), which is of concern as methane is 
a potent greenhouse gas. For literature, see REFS 123–125. 
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Electron bifurcation
Separation of the two electrons 
from ubiquinol at the quinol 
oxidation site of the bc1 
complex (complex III) of the 
respiratory chain, which leads 
to a bifurcation of the two 
electrons to a high and a low 
potential pathway.

Menaquinone
Abbreviation for methylnaph-
thoquinone, an electron carrier 
in the cytoplasmic membrane 
of many bacteria and archaea. 
Reduction by one electron 
yields the menasemiquinone 
anion, which upon further 
reduction by a second electron 
takes two protons and thus 
forms menahydroquinone (also 
called menaquinol).

complex that mediates flavin-based electron bifurcation 
(a coupling mechanism that was recently discovered in 
clostridia)25–27. Finally, we point out how by involving 
flavoprotein-linked electron bifurcation one can also 
explain how Methanosphaera stadtmanae can grow on 
methanol and H2, for which there has previously been 
no convincing explanation.

Methanogens with and without cytochromes
Five orders of methanogenic archaea have been iden-
tified (BOX 2): Methanopyrales, Methanococcales, 
Methanobacteriales, Methanomicrobiales and 
Methanosarcinales. The order with the deepest root 
among the Euryarchaeota is the Methanopyrales and 
the one that branches off last is the Methanosarcinales1. 
All members of the Methanosarcinales contain cyto-
chromes28–31 and methanophenazine (a functional 
menaquinone analogue)32–34 and have a broad substrate 
spectrum. For example, Methanosarcina barkeri can use 
all the methanogenic substrates discussed above, except 
for formate35. The members of the other four orders lack 
cytochromes and methanophenazine and reduce CO2 
with H2 to methane, although some members can also 
use formate as an electron donor36. Only one metha-
nogen without cytochromes, namely M. stadtmanae, 

cannot reduce CO2 to methane. This human intestinal 
archaeon is instead dependent on methanol and H2 as 
energy sources37. The differences between methanogenic 
archaea with and without cytochromes that can grow on 
H2 and CO2 are summarized in BOX 2. In the following 
sections, the differences in growth yields, ATP gains, H2 
thresholds and upper temperature growth optima are 
discussed.

Growth yields and ATP gains. Methanogens with 
cytochromes that can grow on H2 and CO2, such as 
M. barkeri, have a much higher growth yield on H2 
and CO2 than methanogens without cytochromes 
(BOX 2): the reported growth yields are 6.4 g per 
mole for M. barkeri at 37oC38; 1.4 g per mole for 
Methanobrevibacter arboriphilus39; 1.3 g per mole 
for Methanobacterium bryantii40; 1.9 g per mole for 
Methanothermobacter thermoautotrophicus (formerly 
known as Methanobacterium thermoautotrophi-
cum strain delta H)41,42; and up to 3 g per mole for 
Methanothermobacter marburgensis (formerly known 
as Methanobacterium thermoautotrophicum strain 
Marburg)43. In a recent comparative study in which the 
same minimal growth medium was used, M. barkeri 
(which has cytochromes) was shown to grow at 37oC 

Box 1 | The reactions involved in CO2 or methanol reduction with H2 to methane

In the table, reactions 1–6, 8, 10, 15 and 16 are catalysed by cytoplasmic proteins4,93 and reactions 7, 9 and 11–14 are 
catalysed by membrane-associated enzyme complexes. In methanogens with cytochromes, CoM‑S‑S-CoB reduction with 
H2 generally proceeds through reactions 11 and 12, whereas in methanogens without cytochromes, CoM‑S‑S-CoB 
reduction with H2 involves reaction 15. The standard free energy change (∆Go′) was calculated from equilibrium constants 
or from the standard free energies of formation at 25oC with H2, CO2 and CH4 in the gaseous state at 105 Pa, H2O in the 
liquid state, pH at 7.0 and all other compounds at 1 molar activity4,8.

F420, coenzyme F420 ; Fd, ferredoxin; H4MPT, tetrahydrosarcinapterin; HS-CoB, coenzyme B; HS-CoM, coenzyme M; MFR, methanofuran; 
MP, methanophenazine. 

Reaction 
number

Equation ∆Go′ (kJ per mole)

1 4 H2 + CO2 → CH4 + 2 H2O –131 

2 CO2 + MFR + Fdred
2– + 2 H+   CHO-MFR + Fdox + H2O 0 

3 CHO-MFR + H4MPT  CHO‑H4MPT + MFR –5 

4 CHO‑H4MPT + H+  CH=_H4MPT+ + H2O –5 

5 CH=_H4MPT+ + F420H2  CH2=H4MPT + F420 + H+ +6 

6 CH2=H4MPT + F420H2  CH3‑H4MPT + F420 –6

7 CH3‑H4MPT + HS‑CoM  CH3‑S-CoM + H4MPT –30 (coupled with 2 Na+ translocations)

8 CH3‑S-CoM + HS‑CoB  CH4 + CoM‑S‑S-CoB –30 

9 H2 + Fdox  Fdred
2– + 2 H+ +16 (coupled to 2 H+, or possibly 2 Na+, 

translocations)

10 H2 + F420  F420H2 (x 2) –11 

11 H2 + MP  MPH2 –50 (coupled with 2 H+ translocations) 

12 MPH2 + CoM‑S‑S-CoB  MP + HS‑CoM + HS‑CoB –5 (coupled with 2 H+ translocations)

13 ADP + Pi  ATP + H2O –32 (coupled to 4 H+, or possibly 4 Na+, 
translocations)

14 2 H+ (outside) + 1 Na+ (inside)  2 H+ (inside) + 1 Na+ (outside) 0 

15 2 H2 + CoM‑S‑S-CoB + Fdox  HS‑CoM + HS‑CoB + Fdred
2– + 2 H+ –39 

16 CH3OH + HS‑CoM  CH3‑S-CoM + H2O –17.5 
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and a doubling time of 13 hours with a YCH4 of 7.2 g per 
mole, whereas M. arboriphilus (which does not have 
cytochromes) grew at 37oC with a doubling time of  
7 hours and had a YCH4 of 1.3 g per mole44.

The methanogens described above grow autotrophi-
cally; that is, they derive their cell carbon exclusively 
from CO2. It has been calculated that a maximum of 6.5 g 
of cells can be synthesized per mole of ATP when these 
cells grow autotrophically (YATP

max of 6.5 g per mole)45,46. 
When corrected for maintenance energy (moles of ATP 
per g times the number of hours of growth), the yield per 
mole of ATP (YATP) is lower and decreases with increasing 
doubling time47. From the YATP and YCH4, the ATP gain 
(n) can be roughly estimated as 1.5 for M. barkeri (YCH4 
of 7.2 g per mole and a doubling time of 13 hours); ~0.3 
for M. arboriphilus (YCH4 of 1.3 g per mole and a doubling 
time of 7 hours); and ~0.5 for M. marburgensis (YCH4 of 3 g  
per mole and a doubling time of 2 hours).

For the synthesis of ATP from ADP and Pi (∆Go′ of 
+32 kJ per mole) in a living cell, at least –50 kJ per mole 
(phosphorylation potential) are required8. The stand-
ard free energy change (∆Go′) that is associated with 
the reduction of CO2 with H2 to methane is –131 kJ per 
mole8 (reaction 1, see BOX 1). This free energy change 
is sufficient for the synthesis of up to 3 moles of ATP. 
However, at the much lower H2 partial pressures (pH2) 
of 1–10 Pa that prevail in most of the natural habitats 
of methanogens10,48, the free energy change (∆G´) that 
is associated with CO2 reduction to methane is only 
between –17 and –40 kJ per mole, which is sufficient 
to drive the synthesis of less than 1 mole of ATP per 
mole of methane. This explains the low growth yields of 
most methanogens that use H2 and CO2. Conversely, the 

high ATP gain of >1 for M. barkeri, which was calculated 
from the growth yield of 7.2 g per mole, indicates that 
this organism should not be able to grow at a pH2 that is 
below 103 Pa, which is what is actually observed.

H2 thresholds. In the reduction of CO2 with H2 to methane 
(reaction 1, see BOX 1), the thermodynamic equilibrium 
(∆G′ equals 0 kJ per mole) is theoretically reached at 25oC 
and a pH2 of approximately 0.1 Pa (assuming that the partial 
pressure of CO2 is equal to the partial pressure of methane;  
∆G′= ∆Go′+ 2.3 RT log [CH4]/[H2]

4 × [CO2], in 
which R is the gas constant and T is the tem-
perature in degrees Kelvin). However, when this 
is coupled with the phosphorylation of ADP  
(4 H2 + CO2 + n ADP + n Pi → CH4 + n ATP + 3 H2O), 
the theoretical H2 threshold concentration is higher. 
Therefore, if n equals 0.5 and there is a phosphoryla-
tion potential of –50 kJ per mole, the threshold pH2 is 
~2 Pa, whereas if n equals 1, the threshold is ~30 Pa. 
This explains why the final concentration of H2 (the 
threshold concentration) in the presence of methano-
gens is generally much higher than 0.1 Pa (∆G of <0 kJ 
per mole)10,11,48–53 (for different results, see Refs 54,55). 
The experimentally determined threshold is always 
lower than the calculated threshold, mainly owing to 
the partial uncoupling of methanogenesis from ATP 
synthesis (which decreases n, the ATP gain) and to the 
decrease in the phosphorylation potential at low rates 
of methanogenesis that is caused by low H2 concentra-
tions. Functionally distinct genes have been shown to 
be regulated by hydrogen limitation and growth rate in 
methanogenic archaea56. Nonetheless, organisms with a 
higher ATP gain have a higher H2 threshold concentra-
tion. Indeed, methanogens without cytochromes cease 
the oxidation of H2 at pH2 1–10 Pa, whereas methanogens 
with cytochromes cease oxidation at a concentration that 
is at least tenfold higher1,2.

The inability of methanogens with cytochromes to 
compete with methanogens without cytochromes for H2 
under the conditions that prevail in their natural envi-
ronments probably explains why many methanogens 
with cytochromes, including Methanosarcina acetivorans, 
Methanolobus tindarius and Methanothrix soehngenii, have 
lost the ability to grow on H2 and CO2. Most of the genes 
that are required for growth on H2 and CO2 are present 
in the genome of M. acetivorans, but do not seem to be 
transcribed57–59.

The different thresholds for H2 could also explain 
why growth on formate seems to be restricted to 
methanogens without cytochromes. In metha-
nogens, formate is converted through the coen-
zyme F420-dependent formate dehydrogenase  
(HCOO– + H+ + F420  CO2 + F420H2; ∆Go′ equals –14 kJ 
per mole) and the F420-reducing hydrogenase FrhABC 
(F420H2  F420 + H2; ∆Go′ equals +11 kJ per mole) to CO2 
and H2, from which methane is subsequently formed60. 
The production of H2 as an intermediate in methano-
genesis from formate is a problem for organisms with a 
high H2 threshold if they are in competition with other 
organisms with lower H2 thresholds in their natural 
environments61.

 Box 2 | Selected differences between methanogenic archaea

The complete genome sequences of 6 methanogens with cytochromes and 15 
methanogens without cytochromes (including 4 Methanococcus maripaludis strains) and 
the incomplete genome sequences of another 34 methanogens are available in the 
Genomes OnLine Database (see Further information). Methanogens with cytochromes all 
belong to the order of Methanosarcinales (which includes the Methanosarcina, 
Methanosaeta and Methanolobus genera). Methanogens without cytochromes include the 
Methanobacteriales, Methanococcales, Methanomicrobiales and Methanopyrales orders.

Methanogens with cytochromes
•  Contain methanophenazine (a functional menaquinone analogue).

•  Growth on H2 and CO2 is restricted to some Methanosarcina species; most can grow on 
acetate, methanol and methylamines and cannot grow on formate35.

•  Threshold H2 partial pressure is generally >10 Pa.

•  Growth yields on H2 and CO2 of up to 7 g per mole of methane.

•  Doubling times are generally >10 hours.

•  No hyperthermophilic species.

Methanogens without cytochromes
•  Do not contain methanophenazine.

• Can grow on H2 and CO2, except for Methanosphaera stadtmanae; cannot grow on 
acetate or methylamines and many can grow on formate36.

• Threshold H2 partial pressure is generally <10 Pa.

• Growth yields on H2 and CO2 of up to 3 g per mole of methane.

• Doubling times can be as low as 1 hour.

• Many hyperthermophilic species.
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A cobalt-containing 
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The upper temperature limit for growth. Another 
interesting difference between methanogens with and 
without cytochromes is that at low temperatures (4oC), 
methanogens with cytochromes predominate, whereas 
at higher temperatures (>60°C), it is mainly metha-
nogens without cytochromes that are abundant11,49; 
methanogens with cytochromes have not yet been found 
to grow at temperatures above 60oC. Hyperthermophily 
seems to be restricted to methanogens without cyto-
chromes, such as Methanopyrus kandleri (Tmax of 
110oC), Methanocaldococcus jannaschii (Tmax of 88oC) 
and Methanothermus fervidus (Tmax of 97oC). Notably, 
the ∆Go′ that is associated with methane formation from 
H2 and CO2 decreases with increasing temperature from 
–131 kJ per mole at 25oC to –100 kJ per mole at 100oC12. 
At high temperatures and a low pH2 (<10 Pa), CO2 reduc-
tion with H2 is not exergonic enough to allow the growth 
of methanogens with an ATP gain of 1 or more.

Common dependence on sodium ions. Both methanogens 
with and without cytochromes require high concentra-
tions of sodium ions for growth and methane forma-
tion (~1mM Na+ to obtain 0.5 Vmax)

62–64. This sodium 
ion dependence can be explained by the finding that 

methyltetrahydromethanoptern: coenzyme M meth-
yltransferase, which is involved in CO2 reduction to 
methane and acetate disproportionation into methane 
and CO2, is a primary sodium ion pump that requires 
high sodium ion concentrations for activity (~1mM Na+ 

to obtain 0.5 Vmax)
65. In line with this interpretation is the 

fact that methane formation from methanol and H2 in 
cell suspensions of M. barkeri62,66 and M. stadtmanae67, 
which does not involve the sodium ion-translocating 
methyltransferase, is sodium ion independent down to 
concentrations of 0.3 mM.

Energy conservation involving cytochromes
The reduction of CO2 with H2 to methane and energy 
conservation in methanogens with cytochromes is con-
sidered to involve 13 reactions (reactions 2–14, see BOX 1) 
in which methanofuran (MFR; a 2‑aminomethylfuran 
derivative), tetrahydrosarcinapterin (H4MPT; a tetrahy-
drofolate analogue) and coenzyme M (HS-CoM; also 
known as 2‑thioethanesulphonate) are C1-unit carriers3,4 
and ferredoxin (Fd), coenzyme F420 (a 5′-dezaflavine 
derivative; E0′ equals –360 mV), coenzyme B (HS-CoB; 
also known as 7‑thioheptanoyl‑o-phospho‑l-threonine; 
E0′ equals –140 mV)34 and methanophenazine (MP; E0′  
equals –165 mV)34 are electron carriers3–5 (FIG. 2). 
Reactions 2–6, 8 and 10 (BOX 1) are catalysed by cyto-
plasmic enzymes and reactions 7, 9 and 11–14 (BOX 1) 
are catalysed by membrane–protein complexes. This 
information is integrated into FIG. 2, in which the reac-
tions that are involved in the reduction of CO2 with H2  
to methane, their topology and their coupling with 
the translocation of protons or sodium ions across the  
cytoplasmic membrane are shown.

Methanogens with cytochromes contain numerous 
ferredoxins that harbour at least two [4Fe–4S] clusters, 
which indicates that they can accept more than one 
electron. For calculation purposes, the standard redox 
potential (E0′) of the ferredoxin that is involved in 
reactions 2 and 9 (BOX 1) was set at –500 mV, which is 
the E0′ of the CO2/CHO-MFR couple4. Thus, the ∆Go′ 
of reaction 2 (BOX 1), which has been shown to operate 
near equilibrium in vivo, becomes 0 kJ per mole41. The 
ferredoxin that is involved in reactions 2 and 9 (BOX 1) 
and its redox potential are not yet known.

The membrane proteins involved. The energy con-
servation that is associated with the reduction of CO2 
with H2 to methane in methanogens with cytochromes 
involves six membrane-associated protein complexes: 
methyl‑H4MPT–coenzyme M methyltransferase 
(MtrA–H; reaction 7, BOX 1), energy-converting [NiFe] 
hydrogenase (EchA–F; reaction 9,  BOX 1), methano-
phenazine-reducing [NiFe] hydrogenase (VhoACG; 
reaction 11, BOX 1), methanophenazine-dependent het-
erodisulphide reductase (HdrDE; reaction 12, BOX 1), an 
A1A0-ATP synthase (AhaA–K; reaction 13, BOX 1) and  
an Na+/H+ antiporter (reaction 14, BOX 1).

MtrA–H contains a corrinoid that is bound to the 
MtrA subunit, and has been shown to couple reaction 7 
(BOX 1) with the translocation of two sodium ions65,68. 
EchA–F69,70 is a nickel–iron–sulphur protein in which 

Figure 2 | The coupling sites that are proposed to be involved in energy 
conservation in Methanosarcina barkeri growing on CO2 and H2. The numbers in 
bold correspond to the reaction numbers in BOX 1. The first and last steps are 
chemiosmotically coupled. The ATP gain (moles of ATP per mole of methane) is assumed 
to be 1.5. The redox potentials are standard potentials at pH 7.0 (E0′). The E0′ of ferredoxin 
was set at –500 mV, which is the E0′ of the CO2/CHO-MFR couple (discussed in the main 
text). C1 units and the cytochrome b subunits VhoC and HdrE are highlighted in red.  
Fd, ferredoxin; H4MPT, tetrahydrosarcinapterin; HS‑CoB, coenzyme B; HS‑CoM, 
coenzyme M; MFR, methanofuran.
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the EchE subunit harbours the active-site [NiFe] cen-
tre71,72, and is assumed to be proton-translocating, as 
the conversion of CO to CO2 and H2 in cell suspensions 
of M. barkeri, which involves the EchA–F complex, 
does not seem to be sodium ion dependent69,70,73–75. 
However, there are also indications that the first step 
in CO2 reduction with H2 in M. barkeri — the reduc-
tion of CO2 with H2 to formyl-MFR (reactions 2 plus 9,  
see BOX 1; ∆Go′ equals +16 kJ per mole) — could be 
directly driven by the electrochemical sodium ion 
potential. For example, methanogenesis from CO2 and 
H2 is not affected by protonophores when the Na+/H+ 
antiporter is inhibited76,77, which is difficult to explain 
if we assume that reaction 9 (BOX 1) is coupled to proton 
translocation. VhoACG78–80 is a nickel–iron–sulphur 
haemoprotein in which VhoA harbours the active-site 
[NiFe] centre and VhoC (a b‑type cytochrome) har-
bours the haem group. In the cytoplasmic membrane, 
the VhoACG complex is orientated with its active 
site facing the periplasm81. HdrDE is an iron–sulphur 
haemoprotein in which HdrD harbours an unusual 
active-site FeS cluster and HdrE (a b‑type cytochrome) 
harbours the haem group82–85. The exergonic reduction 
of the heterodisulphide with H2 (∆Go′ equals –55 kJ 
per mole; reactions 11 and 12, see BOX 1), which is 
catalysed by the VhoACG and HdrDE complexes,  
is coupled with the build-up of an electrochemical 
proton potential66,86 and is likely to have a proton to 
electron ratio of 2 (Refs 78,79). AhaA–K80 is a proton-
translocating ATP synthase that is likely to have a pro-
ton to ATP stoichiometry of 4 (Refs 87–89). The Na+/H+ 
antiporter Nha from methanogens is related to the  
Na+/H+ antiporter in Escherichia coli90, for which  
the proton to sodium ion stoichiometry has been deter-
mined to be 2 (Refs 91,92). However, it should be noted 
that in methanogens with cytochromes (FIG. 2), Nha is 
assumed to have an opposite function to that of the 
antiporter in E. coli: in E. coli (which lacks a primary 
sodium ion pump), Nha is assumed to be involved  
in the build-up of the sodium motive force, whereas in 
M. barkeri, Nha is assumed to be involved in the build-up 
of the proton motive force.

In the metabolic scheme shown in FIG. 2, the ions 
involved and the stoichiometries of chemiosmotic 
coupling have been chosen to best fit all of the experi-
mental data, including the ATP gain of >1. It should be 
noted, however, that there is considerable uncertainty 
surrounding the prediction of ATP gains from growth 
yields and the determination of the number and type of 
cations that are translocated by the energy-converting 
membrane complexes. Because six cation-translocating  
complexes are involved, it is almost impossible to 
measure the activity of one complex in vivo without  
interference from one of the other complexes.

The cytoplasmic enzymes involved. Reactions 2–6, 8 and 
10 (BOX 1) are catalysed by cytoplasmic enzymes. The 
enzymes that catalyse reactions 3–6 are composed of only 
one type of subunit and do not possess a prosthetic group. 
Reaction 2 is catalysed by a molybdenum or tungsten 
iron–sulphur protein (Fmd or Fwd; formylmethanofuran  

dehydrogenase) that contains five different subunits,  
reaction 8 is catalysed by the nickel porphinoid  
F430-harbouring methyl-coenzyme M reductase (Mcr or 
Mrt), which contains three different types of subunit, 
and reaction 10 is catalysed by a nickel–iron–sulphur 
flavoprotein (Frh; an F420-reducing hydrogenase) that is 
composed of three different types of subunit4,93.

An alternative pathway. In some Methanosarcina species, 
the reduction of methanophenazine with H2 (reaction 11, 
see BOX 1) can also be catalysed by the cytoplasmic F420-
reducing hydrogenase FrhABC (reaction 10, BOX 1) in com-
bination with a membrane-associated, energy-conserving 
F420H2-dehydrogenase complex (FpoABCDHIJKLMNO) 
that is related to NADH dehydrogenase, which cataly-
ses the reduction of methanophenazine with F420H2  
(F420H2 + MP → F420 + MPH2; ∆Go′ equals –38 kJ per 
mole). This reaction is coupled to the translocation of 
two protons across the cytoplasmic membrane94.

Energy conservation not involving cytochromes
It is generally thought that CO2 reduction with H2 to 
methane and energy conservation in methanogens 
without cytochromes proceeds in principle as it does in 
methanogens with cytochromes. Only the reduction of 
the heterodisulphide CoM‑S‑S-CoB with H2 (reactions 
11 and 12, BOX 1), which does not involve cytochromes 
and methanophenazine, was known to be different. 
However, the enzyme complex that catalyses this reac-
tion was thought to also be membrane associated and 
proton translocating. In the following sections, we 
present an alternative picture.

The similarities. Most of the enzymes and coenzymes 
that are involved in the reduction of CO2 with H2 to 
methane in methanogens with cytochromes are also 
found in methanogens without cytochromes. The 
enzymes that catalyse reactions 2–10, 13 and 14 (BOX 1) 
are phylogenetically related and have similar structures 
and identical cellular locations. Only the energy-converting  
hydrogenase (reaction 9, BOX 1) has a substantially 
different number of subunits: in M. barkeri, the Ech 
complex contains only 6 subunits, whereas the Eha 
and Ehb complexes contain at least 16 subunits95. 
Interestingly, the hydrogenases Ech, Eha and Ehb are 
phylogenetically related to complex I (the NADH– 
ubiquinol oxidoreductase complex) of the respira-
tory chain. E. coli complex I contains 14 subunits and 
the complex I of mitochondria contains more than  
40 subunits96. There are some differences in the struc-
ture of the coenzymes MFR, H4MPT and F420, but these 
are not functionally important. In vitro, the enzymes 
from methanogens without cytochromes can use the 
coenzymes from methanogens with cytochromes and 
vice versa, although generally with a lower catalytic 
efficiency4.

The apparent lack of a coupling site. Methanogens with 
and without cytochromes differ in how they reduce 
CoM‑S‑S-CoB with H2. Instead of the membrane 
complexes VhoACG (reaction 11, BOX 1) and HdrDE 
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(reaction 12, BOX 1), they contain a cytoplasmic multi-
enzyme complex that is composed of the [NiFe] hydro-
genase MvhADG and the heterodisulphide reductase 
HdrABC, which catalyses the reduction of heterodi-
sulphide with H2, albeit with low catalytic efficiency 
in vitro97,98.

The HdrB and HdrC subunits of the HdrABC 
complex share sequence similarity with HdrE from 
methanogens with cytochromes: HdrE is a hypotheti-
cal fusion protein of HdrB and HdrC, and HdrB is the 
site of heterodisulphide reduction82. However, there 
is no homologue of HdrA in the HdrDE complex.  
HdrA is an FAD-containing iron–sulphur protein, 
which in Methanococcus species also contains selen-
ocysteine. The function of this highly conserved 
flavoprotein in heterodisulphide reduction remains 
unknown83.

The primary structure of HdrB, one of the six 
subunits of the MvhADG–HdrABC enzyme com-
plex, contains a hydrophobic stretch that could form 
a transmembrane helix, which led to the suggestion 
that this multi-enzyme complex could be membrane 
associated and proton translocating3,37. However, 
all attempts to obtain biochemical evidence for an 
association between this complex and the cytoplas-
mic membrane have failed and there are no indica-
tions from bioinformatic analyses that one or several 
of the subunits are located on the periplasmic side of  
the cytoplasmic membrane. Thus, it is unlikely that 
in methanogens without cytochromes the reaction 
that is catalysed by MvhADG–HdrABC is coupled 
to proton or sodium ion translocation across the 
cytoplasmic membrane. If this interpretation is cor-
rect, then methanogens without cytochromes lack 
one of two energy-conserving coupling sites that are 
operative in methanogens with cytochromes (FIG. 2), 
without which it should be difficult for them to grow. 
Obviously, however, they do grow.

A way out of the dilemma? How methanogens without 
cytochromes conserve energy during methanogenesis 
from CO2 even though the components that are involved 
in heterodisulphide reduction with H2 are thought to be 
cytoplasmic and have no association with the cytoplas-
mic membrane clearly remains an important unsolved 
question.

A similar question regarding the energy metabolism 
of Clostridium kluyveri, which does not contain cyto-
chromes, menaquinone or ubiquinone25–27, was recently 
solved. This Gram-positive anaerobic bacterium grows 
on ethanol and acetate, with the formation of butyrate 
(and caproate) and H2 as fermentation products; H2 
bubbles out of the culture. All of the enzymes that 
are involved in this fermentation have been shown to 
be cytoplasmic and to use either NAD as an electron 
acceptor or NADH as an electron donor. Only the 
[FeFe]–hydrogenase that is involved in H2 formation is 
specific for ferredoxin (Fdred

2– + 2 H+  Fdox + H2; ∆Go′ 
equals 0 kJ per mole). In clostridia, ferredoxin harbours 
2 [4Fe–4S] clusters, each of which can be reduced by 1 
electron at a redox potential of approximately –420 mV. 
As all of the enzymes that are involved in ethanol oxida-
tion are NAD specific, in C. kluyveri, ferredoxin must 
be reduced by NADH (E0′ equals –320 mV), which is 
an endergonic reaction that requires the input of energy 
to proceed (NADH + Fdox  NAD+ + Fdred

2– + H+; ∆Go′ 
equals +20 kJ per mole).

The reaction that is most likely to provide the energy 
required for ferredoxin reduction is the strongly exer-
gonic reduction of crotonyl-CoA to butyryl-CoA (E0′ 
equals –10 mV) with NADH (E0′ equals –320 mV), which 
is catalysed by a complex of butyryl-CoA dehydrogenase 
(Bcd) and two electron-transfer flavoproteins (EtfAB)  
(NADH + crotonyl-CoA + H+ → NAD+ + butyryl-CoA;  
∆Go′ equals –60 kJ per mole). How the endergonic reduc-
tion of ferredoxin with NADH is coupled to the exergonic 
reduction of crotonyl-CoA with NADH has remained a 
mystery, however, for more than 30 years. Chemiosmotic 
coupling was excluded by showing that the enzymes 
which catalyse both reactions are not associated with the 
cytoplasmic membrane26,27. Herrmann et al.25 proposed 
that the Bcd–EtfAB complex could catalyse the reaction  
2 NADH + crotonyl-CoA + Fdox → 2 NAD+ + butyryl-
CoA + Fdred

2– (∆Go′ equals –40 kJ per mole), a hypothesis 
that was subsequently verified by Li and colleagues26.

FAD is probably involved in the coupling of ferre-
doxin reduction with NADH to the reduction of 
crotonyl-CoA with NADH, as each of the three dif-
ferent subunits of the Bcd–EtfAB complex contains 
an FAD molecule and there are no other prosthetic 
groups25,26. In some flavoproteins, the flavin nucleotide 
can be reduced by one electron to a stable semiquinone 
flavin radical (FADH or FMNH), which can then be 
reduced by a second electron to the fully reduced  
flavin nucleotide (FADH2 or FMNH2). The first one-
electron reduction generally has a higher positive 
redox potential than the second reduction99. For exam-
ple, in flavodoxin from Acidaminococcus fermentans, 
the first FMN reduction step has a redox potential of 
approximately –60 mV and the second reduction step has 

Figure 3 | The reaction catalysed by the butyryl-CoA dehydrogenase (Bcd)–
electron transfer flavoprotein (EtfAB) complex from Clostridium kluyveri. The 
enzyme complex couples the endergonic reduction of ferredoxin (Fd) with NADH to the 
exergonic reduction of crotonyl-CoA with NADH by flavin-based electron bifurcation 
(right). The redox potentials are standard potentials at pH 7.0 (E0′). FADH, FAD reduced by 
one electron; FADH2, FAD reduced by two electrons (according to Li and colleagues26).

R E V I E W S

nature reviews | microbiology	  volume 6 | august 2008 | 585

 f o c u s  o n  s u s ta i n a b i l i t y

© 2008 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=19067


MvhA

HdrB

HdrC

[NiFe]

3 [4Fe–4S]

[4Fe–4S]

[4Fe–4S]

[4Fe–4S]

[2Fe–2S]

Nature Reviews | Microbiology

CoM-S-S-CoB + 2 H+ HS-CoM + HS-CoB

MvhG

MvhD

2 H2

4 H+

–414 mV

–140 mV

–500 mV

HdrA

Fdox

Fdred
2–

?

2 [4Fe–4S]

2 [4Fe–4S]

4C

FAD

MvhADG–HdrABC 
complex

Zn

a redox potential of approximately –430 mV. Therefore, 
we need only assume that in the Bcd–EtfAB complex the 
electron flow from NADH through FADH2 is bifurcated 
such that the oxidation of FADH2 to FADH is coupled 
to the reduction of the clostridial ferredoxin (E0′ equals  
–420 mV) and the oxidation of FADH to FAD is coupled 
to the reduction of crotonyl-CoA (E0′ equals –10 mV)25,26 
(FIG. 3). This proposed mechanism is analogous to that of 
electron bifurcation in the cytochrome bc1 complex that 
catalyses the oxidation of reduced ubiquinone with cyto-
chrome c of the respiratory chain100. Evidently, in addition 
to ubiquinone-based electron bifurcation, flavin-based 
electron bifurcation also occurs.

Evidence for electron bifurcation in methanogens. 
Based on the mechanism of ferredoxin and crotonyl-
CoA reduction with NADH that is shown in FIG. 3, we 
propose that that the cytoplasmic MvhADG–HdrABC 
complex catalyses the reduction of the heterodisul-
phide of coenzyme M (HS-CoM) and coenzyme B 
(HS-CoB) (E0′ equals –140 mV) with H2 (E0′ equals 
–414 mV) and couples this exergonic reaction with the 

reduction of ferredoxin (–500 mV) (reaction 15, see 
BOX 1) by flavin-based electron bifurcation (FIG. 4).

This proposal, which for the first time provides a 
function for the FAD-harbouring subunit HdrA (FIG. 4), 
is substantiated by the following experimental results. 
First, cell extracts of M. thermoautotrophicus have been 
shown to slowly catalyse the reduction of CO2 to methane 
only upon spiking with methyl-coenzyme M or CoM‑S‑S-
CoB101,102. This phenomenon is referred to in the literature 
as the RPG effect. The RPG effect indicates that the first 
step in methanogenesis from CO2 and H2 is somehow 
coupled to the reduction of CoM‑S‑S-CoB. Larger parti-
cles were removed from the cell extracts by centrifugation 
at 25,000 g, making the presence of vesicles — and thus 
chemiosmotic coupling — unlikely. Cell extracts of the 
cytochrome-containing M. barkeri do not show the RPG 
effect. Second, cell extracts of M. thermoautotrophicus 
have been shown to catalyse the CoM‑S‑S-CoB-depend-
ent reduction of CO2 with H2 to formyl-MFR103. As CO2 
reduction to formyl-MFR is ferredoxin dependent, this 
finding indicates that the reduction of ferredoxin with 
H2 is CoM‑S‑S-CoB dependent. Based on this finding, 
Rouvière and Wolfe102 proposed in 1988 that CO2 reduc-
tion to formyl-MFR and CoM‑S‑S-CoB reduction with H2 
have a cytoplasmic component, probably a ferredoxin, in 
common. Finally, cell extracts of M. thermoautotrophicus 
have been shown to catalyse the CoM‑S‑S-CoB-dependent 
reduction of metronidazole with H2 (Ref. 104). CoM‑S‑S-
CoB could not be substituted by any other disulphide in 
promoting metronidazole reduction, and metronidazole is 
known to be spontaneously reduced by ferredoxin. These 
findings again indicate that the reduction of ferredoxin 
with H2 is CoM‑S‑S-CoB dependent and correspond with 
the observation that the MvhADG–HdrABC complex 
catalyses the reduction of CoM‑S‑S-CoB rather than the 
reduction of other disulphides83.

Most of these results have been repeated with cell 
extracts of M. marburgensis, but an unambiguous dem-
onstration that the purified MvhADG–HdrABC complex 
catalyses reaction 15 (BOX 1) has not yet been achieved. 
The complex does seem to be more labile and more sus-
ceptible to uncoupling than the Bcd–EtfAB complex from 
C. kluyveri.

A proposed metabolic scheme. If the idea that in metha-
nogens without cytochromes the reduction of heterodi-
sulphide with H2 is coupled to the reduction of ferredoxin 
(reaction 15, BOX 1; FIG. 4) by flavin-based electron bifurca-
tion is correct, then the metabolic scheme shown in FIG. 2  
changes to that shown in FIG. 5.

In FIG. 5, it is assumed that the A1A0-ATP synthase is 
sodium ion translocating rather than proton translocat-
ing. This assumption is based on three findings. First, ATP 
synthesis in M. marburgensis, which is driven by vali-
nomycin-mediated potassium ion efflux, is significantly 
enhanced in the presence of sodium ions105,106. Second, 
at Vmax concentrations of sodium ions, methanogenesis 
from CO2 and H2 and ATP synthesis in cell suspensions 
of M. marburgensis are almost completely insensitive to 
protonophores107–109. And third, dicyclohexylcarbodiim-
ide (DCCD) inhibits the ATP synthesis that is coupled to 

Figure 4 | Proposed scheme for the reduction of 
CoM‑S‑S-CoB with H2 that is catalysed by the 
hydrogenase (MvhADG)–heterodisulphide reductase 
(HdrABC) complex in methanogens without 
cytochromes. The enzyme complex is proposed to couple 
the endergonic reduction of ferredoxin with H2 to the 
exergonic reduction of CoM‑S‑S-CoB with H2 by flavin-
based electron dismutation that involves the FAD in HdrA. 
The redox potentials are standard potentials at pH 7.0 (E0′). The  
E0′ of ferredoxin was set at –500 mV, which is the E0′ of 
the CO2/CHO-MFR couple (discussed in the main text). 
The sequence of HdrB contains ten conserved cysteines 
that are organized into two so-called CCG domains 
(CX31–39CCX35–36CXXC). The carboxy‑terminal CCG domain 
is involved in an unusual [4 Fe–4 S] cluster formation and the 
amino‑terminal domain is involved in zinc binding. The zinc 
in HdrB is ligated by three sulphurs and one histidine 
nitrogen, as revealed by Zn-K‑edge X‑ray absorption 
spectroscopy82. The ‘4C’ in HdrA represents a conserved 
sequence motif that contains four cysteines, and in HdrA 
from Methanococcus spp., one of the four cysteines is a 
selenocysteine. Fd, ferredoxin; HS‑CoB, coenzyme B; 
HS‑CoM, coenzyme M.

R E V I E W S

586 | august 2008 | volume 6	  www.nature.com/reviews/micro

R E V I E W S

© 2008 Macmillan Publishers Limited.  All rights reserved. 

 



Nature Reviews | Microbiology

2 Na+

4 H2 + CO2

–500 mV

–414 mV –140 mV

Fdred
2–

H2 F420H2

CO2

CH4

2

3

4

5

6

10

H2 F420H210

CHO-MFR

CH=H4MPT+

CH2=H4MPT

CH3-H4 MPT

CH3-S-CoM

HS-CoB

CoM-S-S-CoB
8

2 H+

1 Na+

14

MvhADG–
HdrABC

A1A0
ATPase

2 e–

152 H2

+ –

Methanobacteriales
Methanococcales
Methanopyrales
Methanomicrobiales
(all without cytochromes)

CH4 + 2 H2O

9

Eha and/or
Ehb complex

H2 + Fdox

Fdred
2–

MtrA–H

2 Na+7

ADP

ATP
13 4 Na+

Fdox

methanogenesis from methanol and H2 in M. stadtmanae 
only at low sodium ion concentrations, which indicates 
that the reaction of the A1A0-ATP synthase with DCCD 
is prevented by sodium ions67,89. In fact, from the primary 
structure of the A0 subunits, it has been deduced that the 
A1A0-ATP synthase from all methanogens should be 
sodium ion translocating88,89. However, no sodium ion 
dependence was observed for the Methanosarcina mazei 
enzyme80, which is why in methanogens with cytochromes 
(FIG. 2), ADP phosphorylation is assumed to be driven by 
the proton motive force. Notably, the F1F0 synthases of 
bacteria can also be either sodium ion or proton coupled, 
with one sodium ion being equivalent to one proton110.

Another difference between the schemes in FIG. 2 

and FIG. 5 is that in methanogens without cytochromes 
the energy-converting hydrogenase complex Eha 
and/or Ehb (reaction 9, see BOX 1) is assumed to be 
sodium ion translocating. This is indicated by the 
observation that the oxidation of formaldehyde (which 
reacts spontaneously with H4MPT to produce meth-
ylene‑H4MPT) to CO2 and 2 H2 (reactions 2–5 and 
reaction 9 in reverse, see BOX 1) in M. marburgensis 
is sodium ion dependent76. This assumption is also 
supported by the finding that the Eha- and Ehb-type 
hydrogenase that is present in Pyrococcus furiosus111, 

together with its A1A0-ATP synthase, are probably 
coupled through the sodium ion motive force, as the 
A1A0-ATP synthase from P. furiosus has been shown to 
be sodium ion translocating89. As mentioned earlier, 
some of the subunits of Eha and Ehb show sequence 
similarity to subunits of complex I in the respiratory 
chain of bacteria, and it is therefore of interest that 
this complex can also be either proton translocating 
or sodium ion translocating112.

How can the function of the Eha or Ehb hydroge-
nase be explained by the scheme shown by FIG. 5? The 
reduced ferredoxin that is generated in reaction 9 (BOX 1)  
is required for autotrophic CO2 fixation — for exam-
ple, the reduction of CO2 to CO (E0′ equals –520 mV), 
the reduction of acetyl-CoA and CO2 to pyruvate (E0′ 
equals –500 mV) and the reduction of succinyl-CoA 
and CO2 to 2‑oxoglutarate (E0′ equals –500 mV)113,114. 
The reduced ferredoxin is also required for CO2 reduc-
tion to methane if the coupling of ferredoxin and 
CoM‑S‑S-CoB reduction with H2 by the cytoplasmic 
MvhADG–HdrABC complex is not tight. In the absence 
of an energy-converting hydrogenase, any uncoupling of 
ferredoxin and CoM‑S‑S-CoB reduction with H2 would 
eventually stop CO2 reduction to methane. Consistent 
with these functions is the fact that an Eha and/or Ehb 
hydrogenase complex is found in all methanogens with-
out cytochromes and that the specific activities of Eha 
and Ehb in cell extracts are much lower than would be 
predicted if they were directly involved in CO2 reduction 
to methane95,113.

What is the function of the Na+/H+ antiporter 
(Nha) in FIG. 5? Inhibitors of Na+/H+ antiporters and 
artificial Na+/H+ antiporters, such as monensin, exert 
various effects on methanogenesis and ATP synthesis in  
M. marburgensis106,115,116 and M. stadtmanae67, which 
can be explained, at least in part, by the fact that the 
antiporter has a function in pH homeostasis.

The scheme in FIG. 5 can also explain why the ATP 
gain in methanogens without cytochromes does not 
exceed 0.5 and is thus much lower than the ATP gain of 
1.5 that is observed in methanogens with cytochromes 
(FIG. 2). The finding that the ATP gain in methanogens 
without cytochromes is frequently lower than 0.5 indi-
cates that coupling of ferredoxin and CoM‑S‑S-CoB 
reduction with H2 is not always tight, as would be 
expected from flavin-based electron bifurcation.

A test case: M. stadtmanae
The metabolic scheme in FIG. 5 indicates that during 
CO2 reduction to methane, methanogens without 
cytochromes conserve energy only in reaction 7 (BOX 1),  
which is catalysed by the membrane-associated 
methyl‑H4MPT–coenzyme M methyltransferase com-
plex (MtrA–H). The sodium ion motive force that is 
generated in this reaction is subsequently used to 
drive reverse electron transport (reaction 9, BOX 1),  
ATP synthesis (reaction 13, BOX 1) and Na+/H+ anti-
port (reaction 14, BOX 1). If this scheme is correct, 
then how is energy conserved in M. stadtmanae, 
a methanogen without cytochromes that can only 
reduce methanol and not CO2 with H2 to methane  

Figure 5 | The coupling sites that are proposed to be involved in energy 
conservation in methanogens without cytochromes growing on CO2 and H2. 	
The numbers in bold correspond to the reaction numbers in BOX 1. The first and last 
steps are coupled by flavin-based electron bifurcation. The ATP gain (moles of ATP per 
mole of methane) is assumed to be 0.5. The redox potentials are standard potentials at 
pH 7.0. The E0′ of ferredoxin was set at –500 mV, which is the E0′ of the CO2/CHO-MFR 
couple (discussed in the main text). The reaction that is catalysed by the cytoplasmic 
MvhADG–HdrABC complex (reaction 15) is delineated by a thicker grey arrow. C1 units 
are highlighted in red. Fd, ferredoxin; H4MPT, tetrahydromethanopterin; HS‑CoB, 
coenzyme B; HS‑CoM, coenzyme M; MFR, methanofuran.
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152 H2

CH3OH
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9
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13 4 Na+

Ehb
complex

Proton motive Q cycle
A cycle that is catalysed by the 
bc1 complex (complex III) of the 
respiratory chain and that 
mediates the oxidation of 
ubiquinol with cytochrome c 
and couples this reaction with 
the electrogenic translocation 
of four protons in a cyclic 
process.

(CH3OH + H2 → CH4 + H2O; ∆Go equals –112.5 kJ per 
mole) and that lacks a functional methyltransferase 
coupling site37? This is explained in the scheme shown 
in FIG. 6.

The first step in methanol metabolism is the formation 
of methyl-coenzyme M from methanol and coenzyme M, 
which is catalysed by the cytoplasmic enzyme complex 
MtaABC (reaction 16, BOX 1). Methyl-coenzyme M is 
subsequently reduced to methane by reactions 8 and 15 
(BOX 1), which are catalysed by the cytoplasmic enzyme 
complexes methyl-coenzyme M reductase (MrtABG) 
and MvhADG–HdrABC, respectively. The reduced 
ferredoxin that is generated by reaction 15 (BOX 1)  
is finally reoxidized with protons to yield H2 (reaction 9, 
BOX 1). This reaction is catalysed by an energy-convert-
ing hydrogenase (Ehb) and coupled to the build-up of a 
sodium ion motive force which, in turn, can drive the 
synthesis of ATP (reaction 13, BOX 1).

As for P. furiosus that is growing on maltose, in 
M. stadtmanae that is growing on H2 and methanol the 
Ehb complex is proposed to catalyse the formation of H2 
(Ref. 111) (reaction 9, BOX 1). This allows the reduction of 
methanol with H2 to methane to be coupled to energy 
conservation. In this energy metabolism, H2 is both con-
sumed (reaction 15, BOX 1) and formed (reaction 9, see 
BOX 1) (FIG. 6). This situation is not without precedent; the 
best known example is the proton motive Q cycle, which is 
catalysed by the bc1 complex of the respiratory chain and 
in which ubiquinone is both oxidized and reduced25,26.

An exception?
Rice Cluster I (RC-I), a methanogen with cytochromes 
that can only grow using CO2 and H2 or formate as 
energy sources, was recently found in paddy-field 

sediments. The H2 threshold concentration shown 
by this archaeon was low (<10 Pa)117, indicating a low 
ATP gain. RC-I therefore behaves like a methanogen 
without cytochromes.

An explanation for this behaviour comes from an 
analysis of the genome sequence of this organism118, 
in which putative genes that encode two enzyme 
complexes that were thought to be characteristic for 
methanogens without cytochromes — an MvhADG–
HdrABC complex and an F420-dependent formate 
dehydrogenase — were found. As discussed above, 
methanogens with cytochromes are phylogenetically 
younger than those without cytochromes. The presence 
of characteristic genes from methanogens without cyto-
chromes in methanogens with cytochromes is therefore  
not surprising. Interestingly, in the genome of RC-I, not  
all of the genes that are required for the synthesis of 
VhoACG (reaction 11, see BOX 1) and HdrDE (reac-
tion 12, see BOX 1) are present, which indicates that 
this methanogen with cytochromes is dependent on the 
MvhADG–HdrABC complex (reaction 15, see BOX 1) 
for methanogenesis.

The results from RC-I therefore support rather than 
contradict the hypothesis that energy conservation is 
less effective in methanogens without cytochromes that 
are growing on CO2 and H2 than in methanogens with 
cytochromes.

Conclusions
The differences in the physiological properties of meth-
anogens with and without cytochromes are manifold. 
The most important differences are the higher growth 
yields and H2 threshold concentrations that are observed 
in methanogens with cytochromes. These differences 
have been explained in this Review mainly by differ-
ences in the coupling of ferredoxin and CoM‑S‑S-CoB 
reduction with H2: chemiosmotic coupling on the one 
hand and coupling by flavin-based electron bifurcation 
on the other. Our understanding of the mechanism of 
coupling by flavin-based electron bifurcation in meth-
anogens without cytochromes is still at the level of a 
hypothesis; however, it is a hypothesis for which more 
and more evidence is accumulating. It should be noted 
that a mechanism cannot be proven but only disproved. 
This is the basis for planned future experiments.

Genes that putatively encode an MvhADG–
HdrABC-like complex (FIG. 4) are also present in the 
genome of the sulphate-reducing delta-proteobacte-
rium Desulfovibrio vulgaris119,120 and are expressed dur-
ing growth on ethanol and sulphate119,120. This indicates 
that flavin-based electron bifurcation involving the 
flavoprotein HdrA might also have a role in the energy 
metabolism of non-methanogenic organisms.

Finally, there are other anaerobic microorgan-
isms for which energy-conservation mechanisms are 
unclear; for example, the coupling site that allows 
acetogenic bacteria to grow on CO2 with H2 remains 
to be identified (Refs 121,122) (FIG. 1). When analysing 
the genome sequences of these bacteria for a possible 
coupling site, flavin-based electron bifurcation should 
be kept in mind.

Figure 6 | Proposed energy conservation by the Ehb complex in Methanosphaera 
stadtmanae growing on methanol and H2. The numbers in bold correspond to the 
reaction numbers in BOX 1. Reactions 9 and 15 are coupled by flavin-based electron 
bifurcation. The redox potentials are standard potentials at pH 7.0 (E0′). The E0′ of 
ferredoxin was set at –500 mV (discussed in the main text). The scheme can explain the 
described effects of dicyclohexylcarbodiimide, protonophores and sodium ionophores 
at high and low sodium ion concentrations67 if the presence of an active electrogenic 
Na+/2 H+ antiporter is taken into account. The reaction that is catalysed by the 
cytoplasmic MvhADG–HdrABC complex (reaction 15) is delineated by a thicker grey 
arrow. C1 units are highlighted in red. Fd, ferredoxin; HS‑CoB, coenzyme B; HS‑CoM, 
coenzyme M.
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