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A facultatively anaerobic, halotolerant, moderately thermophilic and non-sporulating bacterium,

designated strain 10CT, was isolated from deep-sea hydrothermal vent samples collected on the

136 N East Pacific Rise at a depth of approximately 2600 m. Cells of strain 10CT were Gram-

positive, motile rods, and grew optimally at 45 6C (range 12–49 6C), pH 7.0 (range pH 5.5–9.5)

and 0–2 % NaCl (range 0–11 %). (+)-L-Lactate was the main organic acid detected from

carbohydrate fermentation with traces of formate, acetate and ethanol. Strain 10CT was catalase-

positive, oxidase-negative and reduced nitrate to nitrite under anaerobic conditions. The DNA

G+C content was 50.4 mol%. Its closest phylogenetic relatives were Exiguobacterium aestuarii

TF-16T and Exiguobacterium marinum TF-80T (16S rRNA gene sequence similarity >99 %).

However, strain 10CT differed genotypically from these two Exiguobacterium species as indicated

by DNA–DNA relatedness data. Therefore, on the basis of phenotypic, genotypic and phylogenetic

characteristics, strain 10CT is considered to represent a novel species of the genus

Exiguobacterium, for which the name Exiguobacterium profundum sp. nov. is proposed. The type

strain is 10CT (=CCUG 50949T=DSM 17289T).

Deep-sea hydrothermal vents are characterized by sharp
physical and chemical gradients that support the growth of
a wide range of hyperthermophilic, psychrophilic and
mesophilic micro-organisms, including anaerobes, aerobes
and microaerophiles (Jeanthon, 2000; Karl, 1995). In these
dark ecosystems, the primary energy source for life is
supplied by various reduced sulfur compounds originating
from the hydrothermal fluid. Besides these compounds, the
presence of toxic heavy metals (Edmond & Von Damm,
1985; Juniper & Sarrizan, 1995; Luther et al., 2001a, b; Rozan
et al., 2000) also constitutes an important selective pressure
on the micro-organisms that inhabit deep-sea hydrothermal
vents (Michard et al., 1984; Von Damm et al., 1985a, b;
Bowers et al., 1988).

Relatively few studies have investigated mesophiles and
moderate thermophiles among the heterotrophic anaerobic
microbial groups thriving in deep-sea environments
(Campbell et al., 2001; Brisbarre et al., 2003) compared
with thermophiles and hyperthermophiles belonging to
the Bacteria and Archaea (Baross & Deming, 1995; Jeanthon
et al., 1998; L’Haridon et al., 1998; Reysenbach et al.,
2000a, b; Wery et al., 2001; Alain et al., 2002a, b; Götz et al.,
2002). Here we report on the isolation from a deep-sea

hydrothermal vent on the 13u N East Pacific Rise of a novel,
moderately thermophilic, anaerobic, homolactic fermenta-
tive bacterium (strain 10CT) belonging to the genus
Exiguobacterium, order Bacillales, family Bacillaceae. The
genus Exiguobacterium was first described by Collins et al.
(1983) on the basis of chemotaxonomic studies (cell-wall
peptidoglycan composition, DNA G+C content and cell
membrane lipid composition) and phenotypic features as all
members of the genus are alkaliphiles. Further studies based
on 16S rRNA gene sequence analysis (Farrow et al., 1994)
supported the validity of the genus Exiguobacterium as a
distinct clade at the boundary of the bacilli group 2 cluster
(Ash et al., 1991). At the time of writing, the genus
Exiguobacterium comprised ten recognized species:
Exiguobacterium aurantiacum (Collins et al., 1983) (the type
species), E. acetylicum (Jones & Keddie, 1986), E. undae, E.
antarcticum (Frühling et al., 2002), E. oxidotolerans (Yumoto
et al., 2004), E. aestuarii, E. marinum (Kim et al., 2005), E.
mexicanum, E. artemiae (Lopez-Cortes et al., 2006) and E.
sibiricum (Rodrigues et al., 2006), isolated from various
industrial wastes, freshwater and marine environments.

Strain 10CT was isolated from a deep-sea hydrothermal
chimney sample collected from the Grandbonum vent site
(13u N 103u 569 W along the East Pacific Rise at a depth
of 2600 m) in June 1999 during the Amistad cruise using
the deep-sea submarine Nautile. Samples were stored in

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene
sequence of strain 10CT is AY818050.
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seawater at 4 uC until processing. Hungate technique
(Hungate, 1969) was used throughout this study. The
basal medium (BM) contained (per litre distilled water): 1 g
NH4Cl, 0.3 g K2HPO4, 0.3 g KH2PO4, 25 g NaCl, 0.2 g
CaCl2, 0.1 g KCl, 3.0 g MgCl2.6H2O, 0.5 g sodium acetate,
0.5 g cysteine hydrochloride, 0.1 g yeast extract (Difco
laboratories), 10 ml of the trace mineral element solution of
Balch et al. (1979) and 1 mg resazurin (Sigma). The pH was
adjusted to 7.3 with 10 M KOH. The medium was boiled
under a stream of O2-free N2 gas and cooled to room
temperature. Five-millilitre aliquots were dispensed into
Hungate tubes and 20-ml aliquots were dispensed into
serum bottles under a stream of N2/CO2 (80 : 20, v/v), and
the sealed vessels were then autoclaved for 45 min at 110 uC.
Prior to inoculation, Na2S.9H2O, NaHCO3 and D-glucose
were injected from sterile stock solutions to final concen-
trations of 0.04 % (w/v), 0.2 % (w/v) and 20 mM,
respectively. The serum bottles containing BM were
inoculated with 2 ml sample and incubated at 45 uC to
initiate an enrichment culture. The culture was purified by
using a repeated Hungate roll-tube method with BM
solidified with 15 g agar l21.

pH, temperature and NaCl growth experiments were
performed in duplicate, by using Hungate tubes containing
BM and D-glucose (20 mM) as energy source. Prior to
inoculation, strain 10CT was subcultured at least once under
the same experimental conditions. For all experiments,
bacterial growth was monitored by measuring the increase
in turbidity at 580 nm in anaerobic tubes inserted directly
into a model UV-160A spectrophotometer (Shimadzu). The
presence of spores was sought by microscopic examination
of the culture at different phases of growth. In addition, the
heat resistance of cells was tested in duplicate by using BM
supplemented with D-glucose (20 mM). After 1, 2 and
8 days incubation, the cultures were heated at 80 uC for 5
and 10 min, transferred into fresh medium (20 %, v/v) and
incubated at 45 uC. Under anaerobic conditions, substrates
to be tested were injected, from sterile stock solutions, to a
final concentration of 20 mM into Hungate tubes contain-
ing BM, and growth was followed by measuring turbidity at
580 nm. For substrates to be tested under aerobic condi-
tions, culturing was carried out in Erlenmeyer flasks
containing BM supplemented with yeast extract (0.2 g l21

final concentration). The use of elemental sulfur (2 %, w/v),
thiosulfate (20 mM), sulfate (20 mM), sulfite (2 mM),
nitrate (10 mM), nitrite (10 mM) and fumarate (20 mM) as
terminal electron acceptors was tested using BM supple-
mented with D-glucose (20 mM) as energy source. Light and
electron microscopy were performed as described by Cayol
et al. (1994). Analytical techniques were used as described by
Fardeau et al. (1993). (+)-L-Lactate dehydrogenase and
(2)-D-lactate dehydrogenase (Boehringer Mannheim) were
used to assess the stereoisomeric state of the lactic acid
produced by fermentation of glucose. Nitrate and nitrite
utilization were tested by using the kit Quantofix
(Macherey-Nagel). Oxidase activity was tested by using
Bio-Rad oxidase disks. Polar lipid, quinone and fatty acid

analysis, determination of the G+C content of the DNA and
DNA–DNA hybridization experiments were carried out by
the Identification Service of the Deutsche Sammlung von
Mikroorganismen und Zellkulturen GmbH (Braunschweig,
Germany). For fatty acid analysis of strain 10CT, cellular
biomass was produced on solid agar medium as described by
Kim et al. (2005). The peptidoglycan was isolated and its
structure determined by using the methods described by
Schleifer & Kandler (1972), Schleifer (1985), Groth et al.
(1996) and MacKenzie (1987). Methods for the purification
and extraction of DNA and the amplification and sequen-
cing of the 16S rRNA gene were as described by Ben Dhia-
Thabet et al. (2004), except for the use of primer Rd1
(59-AAGGAGGTGATCCAGCC-39) instead of R6. Samples
were loaded onto an Applied Biosystems 373XL sequencer
and run for 12 h on a 4.5 % denaturing acrylamide gel by
Genome Express Co. Sequence data were imported into the
sequence editor BIOEDIT version 5.0.9 (Hall, 1999), the base-
calling was examined and a contiguous consensus sequence
was obtained for each isolate. The full sequence was aligned
using the Ribosomal Database Project’s (RDP) Sequence
Aligner program (Maidak et al., 2001). The consensus
sequence was then manually adjusted to conform to the 16S
rRNA gene secondary structure model (Winker & Woese,
1991). A non-redundant BLASTN search (Altschul et al.,
1997) of the full sequence through GenBank (Benson et al.,
1999) identified its closest relative. Sequences used in the
phylogenetic analysis were obtained from the RDP (Maidak
et al., 2001) and GenBank (Benson et al., 1999). Positions of
sequence and alignment ambiguity were omitted, and
pairwise evolutionary distances based on 1342 unambig-
uous nucleotides were calculated using the method of Jukes
& Cantor (1969). Dendrograms were constructed using
the neighbour-joining method (Saitou & Nei, 1987).
Confidence in tree topology was determined by using 100
bootstrapped trees (Felsenstein, 1985).

Enrichment of cultures and purification were conducted at
45 uC under anaerobic conditions. Creamy, circular colonies
(2 mm in diameter) appeared after 3 days incubation in
roll tubes. Several strains showing similar cell morphology
and displaying homolactic metabolism were isolated,
but only strain 10CT was characterized further.
Microscopic examination revealed the presence of non-
spore-forming, rod-shaped cells (0.5–1.062–10 mm)
occurring singly or in pairs, and motile by means of
peritrichous flagella. Electron microscopy of cellular sec-
tions revealed a thick, stratified Gram-positive-type cell wall,
composed of three layers, an internal thick layer and a
thinner external layer separated by a light space. Cell-wall
analysis revealed that the peptidoglycan type of strain 10CT

was A3a L-Lys–Gly.

Analysis of the most recent 16S rRNA gene sequences
available from the RDP and GenBank revealed that strain
10CT belonged to the genus Exiguobacterium, order
Bacillales, family Bacillaceae, with E. aestuarii TF-16T and
E. marinum TF-80T (Kim et al., 2005) being its closest
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phylogenetic relatives (99.78 and 99.48 % sequence simi-
larity, respectively) (Fig. 1).

As with other members of the genus Exiguobacterium, strain
10CT exhibited growth under alkaline conditions (up to
pH 9.5) and was halotolerant, growing in the presence
of NaCl concentrations ranging from 0 to 110 g l21,
with optimum growth at 0–20 g l21. However, strain
10CT differed markedly from recognized mesophilic
Exiguobacterium species as it exhibited the highest optimum
temperature (45 uC) for growth, which may reflect its origin
within a deep-sea hydrothermal vent. It must therefore be
considered as a moderate thermophile, as it grew optimally
at temperatures above 40–42 uC (the defined limit for
growth of mesophilic micro-organisms) and at up to 49 uC
(Table 1). Under anaerobic conditions, strain 10CT fer-
mented glucose mainly into (+)-L-lactic acid with traces of
formate, acetate and ethanol. The molar ratio of 2 moles
lactate produced per mole glucose fermented corresponded
to a homolactic fermentative pattern for strain 10CT.
Although some Exiguobacterium species have been described
as heterolactic fermentative bacteria (lactate, acetate,
ethanol and formate being the main end products of
metabolism), it is well known that the fermentative pattern
depends to a large degree on the culture conditions. Strain
10CT grew aerobically in BM medium only in the presence
of yeast extract (0.2 g l21) and must be considered as a
facultative anaerobe. In the presence of oxygen, glucose was
first oxidized to CO2 and acetate. Thereafter, acetate was
oxidized to CO2. In addition, strain 10CT was catalase-
positive and oxidase-negative, reduced nitrate to nitrite but
did not reduce the sulfur compounds tested (elemental
sulfur, sulfate, thiosulfate and sulfite).

The dendrogram including all Exiguobacterium species
(Fig. 1) revealed unambiguously two distinct clusters.
Cluster I comprised E. aurantiacum, E. mexicanum, E.
aestuarii, E. marinum and strain 10CT and cluster II
comprised E. acetylicum, E. oxidotolerans, E. sibiricum, E.
artemiae, E. antarcticum and E. undae. In contrast to
members of cluster II, it was noteworthy that members of
cluster I reduced nitrate to nitrite and were oxidase-negative,
except for E. mexicanum, which was oxidase-positive

(Table 1). Differential physiological characteristics for
members of cluster I are given in Table 1.

As with other members of the genus Exiguobacterium, strain
10CT contained MK7 (82 %), MK8 (14 %) and MK6 (4 %) as
major menaquinones, and polar lipids found were diphos-
phatidylglycerol, phosphatidylglycerol, phosphatidylethanol-
amine and two unidentified phospholipids. The qualitative
profile of branched-chain fatty acids for strain 10CT was
close to that for E. marinum, E. aestuarii and E. aurantiacum,
iso-C13 : 0, anteiso-C13 : 0, iso-C15 : 0 and iso-C17 : 0 fatty acids
being the predominant components (Table 2). However, the
amount of these branched-chain fatty acids in strain 10CT

differed markedly from that in the type strains of E. marinum
and E. aestuarii, its closest phylogenetic relatives. Notably,
C16 : 1v7c and C16 : 1v11c were detected in strain 10CT but not
in E. aestuarii or E. marinum. Moreover, iso-C17 : 1v10c was
found in significantly smaller proportions in E. aestuarii and
E. marinum. Finally, based on their fatty acid profiles, E.
marinum and E. aestuarii are more closely related to each
other than to strain 10CT. Differences in the fatty acid profiles
of strain 10CT and E. mexicanum were also observed
(Table 2), but these may result from the culture conditions
used to obtain biomass in each case.

In addition, despite phylogenetic similarities between strain
10CT, E. aestuarii and E. marinum, levels of DNA–DNA
relatedness (25 % between strain 10CT and E. aestuarii TF-
16T; 21 % between strain 10CT and E. marinum TF-80T)
revealed that strain 10CT should be assigned novel species
status within the genus Exiguobacterium (Wayne et al.,
1987).

Based on its phylogenetic, genotypic and phenotypic
characteristics, strain 10CT is considered to represent a
novel species of the genus Exiguobacterium, for which the
name Exiguobacterium profundum sp. nov. is proposed.

Description of Exiguobacterium profundum
sp. nov.

Exiguobacterium profundum (pro.fun9dum. L. neut. adj.
profundum deep, living within the depth of the oceans).

Fig. 1. Neighbour-joining phylogenetic den-
drogram based on 16S rRNA gene
sequence data indicating the position of
strain 10CT among members of the genus
Exiguobacterium. Accession numbers of 16S
rRNA gene sequences of reference organ-
isms are indicated. Bootstrap values from
100 replications are shown at branching
points; only values above 80 are shown.
Bar, 2 substitutions per 100 nt.
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Gram-positive, non-sporulating rods, 0.5–1.062–10 mm,
occurring singly, in pairs or in short chains, and motile by
means of peritrichous flagella. Colonies are circular
(1–2 mm) and creamy or orange under anaerobic or
aerobic conditions. Chemo-organotrophic and facultatively
anaerobic. Catalase-positive and oxidase-negative. It is
moderately thermophilic (growth between 12 and 49 uC,
no growth at 50 uC, optimum at 45 uC) and halotolerant
(growth in the presence of 11 % NaCl, optimum 0–2 %
NaCl). pH range for growth is 5.5–9.5 (optimum pH 7.0).
Yeast extract is required to use sugars. (+)-L-Lactate is the
main organic acid detected (about 2 moles lactate are
produced per mole glucose fermented) from carbohydrate
fermentation, with traces of formate, acetate and ethanol
being produced. Substrates used for growth under anaerobic

conditions are aesculin, amygdalin (weakly), arbutin,
cellobiose, D-fructose, D-galactose, N-acetyl-D-glucosamine,
D-glucose, gentiobiose, maltose, D-mannitol, D-mannose,
D-ribose, salicin, starch, sucrose and trehalose. Substrates
used for growth under aerobic conditions are acetate,
aesculin, amygdalin, cellobiose, D-fructose, D-galactose, D-
glucose, glycerol, L-lactate (weakly), lactose (weakly),
maltose, D-mannitol, D-mannose, melibiose, pyruvate, D-
raffinose, D-ribose, salicin, starch, sucrose and trehalose. No
anaerobic or aerobic growth in the presence of the following
substrates: D-arabinose, benzoate, butyrate, dulcitol, for-
mate, fumarate, inulin, D-melezitose, propionate, L-rham-
nose, L-sorbose and D-xylose. Elemental sulfur, sulfate,
thiosulfate, sulfite and nitrite are not used as electron
acceptors. Nitrate is reduced to nitrite. The peptidoglycan
type is L-Lys–Gly. The major menaquinones are MK7
(82 %), MK6 (4 %) and MK8 (14 %). The branched-chain
saturated fatty acids iso-C13 : 0, anteiso-C13 : 0, iso-C15 : 0 and
iso-C17 : 0 represent the major fatty acids of the cellular
membrane. The major polar lipids are diphosphatidylgly-
cerol, phosphatidylglycerol and phosphatidylethanolamine.
The DNA G+C content is 50.4 mol%.

The type strain, 10CT (=CCUG 50949T=DSM 17289T),
was isolated from deep-sea hydrothermal vent samples

Table 2. Fatty acid compositions (%) of strain 10CT and
the type strains of members of Exiguobacterium cluster I

Strains: 1, strain 10CT; 2, E. aestuarii DSM 16306T (data from

Kim et al., 2005); 3, E. marinum DSM 16307T (Kim et al., 2005);

4, E. mexicanum DSM 16483T (Lopez-Cortes et al., 2006); 5, E.

aurantiacum DSM 6208T (Kim et al., 2005). Major components

(>10 %) are indicated in bold. 2, Not detected.

Fatty acid 1 2 3 4 5

Straight chain

C12 : 0 2 2 2 8.3 2

C14 : 0 0.4 2 2 6.1 2

C16 : 0 3.1 5.3 4.3 32.8 4.4

C18 : 0 2 1.7 0.8 7.0 0.7

Branched

iso-C11 : 0 2 2 2 1.5 2

iso-C12 : 0 1.9 1.7 2.6 2.1 3.4

iso-C13 : 0 13.3 11.5 11.5 11.2 11.5

anteiso-C13 : 0 16.1 15.6 18.1 8.9 19.5

iso-C14 : 0 1.4 1.3 0.8 2 0.7

iso-C15 : 0 17.8 13.1 10.4 1.7 10.4

anteiso-C15 : 0 3.5 3.2 2.6 2 2.3

iso-C16 : 0 4.4 7.1 5.0 2 4.0

iso-C17 : 0 15.4 27.2 34.4 2 28.7

anteiso-C17 : 0 6.3 8.2 7.1 2 8.3

iso-C18 : 0 0.6 2.2 1.2 2 0.6

Unsaturated

C16 : 1v7c 3.7 2 2 6.5 2

C16 : 1v11c 2.9 2 2 10.3 1.3

iso-C17 : 1v10c 7.3 1.1 0.9 2 1.8

Table 1. Differential characteristics between strain 10CT and
the type strains of members of Exiguobacterium cluster I

Strains: 1, strain 10CT; 2, E. aestuarii DSM 16306T (data from

Kim et al., 2005; Lopez-Cortes et al., 2006); 3, E. marinum DSM

16307T (Kim et al., 2005; Lopez-Cortes et al., 2006); 4, E. mexica-

num DSM 16483T (Lopez-Cortes et al., 2006); 5, E. aurantiacum

DSM 6208T (Collins et al., 1983; Lopez-Cortes et al., 2006). All

strains were catalase-positive, and positive for acid production

from aesculin, D-fructose, gentiobiose, D-glucose, maltose, D-man-

nitol, N-acetylglucosamine, salicin, sucrose and trehalose. All

strains were negative for acid production from adonitol, D-arabi-

nose, D-arabitol, dulcitol, D-fucose, D-lyxose, D-melezitose, D-sor-

bitol, erythritol, inulin, L-rhamnose, L-sorbose and xylitol. W,

Weak; ND, no data available.

Characteristic 1 2 3 4 5

Temperature range

(uC)

12–49 10–47 10–43 20–41 7–43

Temperature

optimum (uC)

45 30–37 30–37 ND 37

NaCl range (%) 0–11 0–19 0–17 ND ND

Oxidase 2 2 2 + 2

Nitrate to nitrite + + + ND +

Acid production from:

Amygdalin W + + + +

Arbutin + + + W +

Cellobiose + + + + 2

D-Galactose + + 2 2 2

Glycerol 2 + + W +

Lactose 2 W + 2 2

D-Mannose + 2 + 2 2

Melibiose 2 + 2 2 2

D-Raffinose 2 2 W 2 2

D-Ribose + + + + 2

D-Xylose 2 2 2 + 2

DNA G+C

content (mol%)

50.4 48.5 48.0 ND 53.2–55.8*

*Determined by two different methods by Collins et al. (1983).
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collected on the 13u N East Pacific Rise at a depth of
approximately 2600 m.
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