Editorial Manager(tm) for Journal of Zhejiang University-SCIENCE B Manuscript Draft

Manuscript Number: ZUSB-D-09-00181R1

Title: Bacterial and archaeal communities in the surface sediment from the northern slope of the South China Sea

Article Type: Article

Corresponding Author: Dr. LIAO Li, Ph.D.

Corresponding Author's Institution: Zhejiang University

First Author: LIAO Li, Ph.D.

Order of Authors: LIAO Li, Ph.D.; XU Xue-Wei, Ph.D.; WANG Chun-Sheng; ZHANG Dong-Sheng; WU Min

Abstract: Abstract: Microbial diversity of sediments from the northern slope of the South China Sea was studied by constructing bacterial and archaeal 16S rRNA gene clone libraries. Fourteen bacterial phylogenetic groups were detected, including Gammaproteobacteria, Deltaproteobacteria, Planctomycetes, Alphaproteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Chloroflexi, Acidobacteria, Betaproteobacteria, Nitrospirae, candidate divisions OP8 and OP11, and an unknown group. Gammaproteobacteria was the predominant group in bacterial libraries with percentages ranging from 31.8% to 63.2%. However, archaeal libraries had relatively lower diversity, with most clones belonging to marine archaeal group I uncultured Crenarchaeota. In addition, two novel euryarchaeal clones were detected not to match any culture-dependent isolates or culture-independent groups. Compared with other gas hydrate-rich ecosystems and different areas of the South China Sea, a distinct microbial community was revealed in this study.

Response to Reviewers: please see attachment

August 29, 2009

Dear editor,

Attached please find the revised version of the manuscript entitled "Bacterial and archaeal communities in the surface sediment from the northern slope of the South China Sea" – Liao *et al.*, ZUSB-D-09-00181. We want to thank you and the anonymous reviewers for the helpful comments. The changes made, based on the comments raised by the reviewers, are explained below.

Yours sincerely Xue-Wei Xu Min Wu

Comments from reviewer 1

1, Strongly suggest having a native English speaker edit the manuscript as there are numerous errors in the choice of words, although the text is usually understandable. Examples:

with percentages arranging considerable low diversity four unique groups Besides, two novel should read should read probably should use should read with percentages ranging considerably lower diversity four uncommon groups In addition, two novel

Changed as suggested (page 1, lines 17 to 19). In addition, the English text had been revised by Professor Manyuan Long, the University of Chicago (Email: mlong@midway.uchicago.edu).

2, The small libraries appear to have been sufficient to capture a large fraction of the diversity of archaea, but the authors make no comment regarding how well bacterial diversity is represented. It would have been quite easy to show rarefaction plots for bacteria as well.

The rarefaction analysis for bacterial libraries were performed and showed in Fig. 1b based on the suggestion. The curves showed that bacterial libraries were not saturated. However, we can still get some interesting information from these libraries. What's more, libraries may fail to reach a plateau even if more clones are sequenced. Considering the cost, we have to reduce our sampling effort to get a preliminary analysis of bacterial diversity in South China Sea, which disclosed some useful clues as we hoped.

3, The lengthy recitation of which environmental or cultured organism is mostly closely related is not very useful. The narrative description is very difficult to read and provides little insight into the meaning of the relationships. If you know that a particular clone was most closely related to an organism in uranium mines or rice fields, what have you learned? Most of the results could have been put into a table for anyone who is interested in specific details.

According to the comments, the part of "Phylogenetic analysis of bacterial libraries" was shortened to avoid the lengthy recitation and useless description. Interesting results and specific clones were discussed in the "DISCUSSION" part. Considering most of the results, especially the closest relatives and environments retrieved, were illustrated by phylogenetic trees in Fig. 4a~4c, we did not put them in a table in order to avoid repetition.

4, I would say that the greatest deficiency of the manuscript is the small library size. Because few clones were available, the absence of organisms means very little. However, the presence of some organisms is interesting and the authors have been reasonably careful to avoid overinterpreting their data set.

We know that libraries are small-sized and may miss many organisms. However, just as the reviewer pointed out, the presence of some interesting organisms makes sense in understanding the microbial communities living in hydrate-rich sediments of South China Sea. That's the value of our study. Certainly, your advice is helpful to our future researches.

5, In summary, the authors have a modest amount of information to present, and the information is somewhat interesting. I would advise condensing the manuscript, but otherwise found it suitable for publication after revision.

Based on the comments, the revised manuscript was condensed by reducing 4 pages. We appreciate all your precious comments. Thank you very much!

Comments from reviewer 2

Some minor revisions are indicated below and the english should be improved. Minor comments:

- Page 1, line 34: "arranging from": bad english

Changed as suggested (page 1, line 17).

- Page 2, line 15: Sentence "The South China Sea harbors...": bad english.

We have changed "The South China Sea harbors great potential gas hydrates, continental slope and basin are in particular." to "The South China Sea exhibits a great potential for gas hydrate presence." (page 2, lines 31 to 32).

- Page 3, line 23, Sampling and sites information. Please give more details on the sediments. Give the date of collection. What type of sediments were collected? (the surface 0-1 cm? 0-5 cm? 0-10 cm?). Were the sediments muddy or sandy? What quantity was sampled?

More details were given on the data of collection and the type of sediments (Sediment samples from the upper 35 cm of the seabed were collected by multicorer), the quality (muddy) and quantity (Muddy surface sediment cores at the depth of 0-5 cm (approximately 50 g wet weight)) of sediments. (page 2, lines 49 to 51)

- Page 3, line 34. Replace "pollution" by "contamination".

Changed as suggested (page 2, line 52).

- Page 3, line 47: replace "were" by "was".

.

Changed as suggested (page 2, line 55).

- Page 3, line 47: what quantity of sediments was used for DNA extraction?

500 mg sediment for each sample was used for DNA extraction (page 2, line 55).

- Page 3, line 59: replace "of" by "by"; replace "were" by "was".

Changed as suggested (page 2, line 58).

- Page 4, line 9. Give the length of the PCR amplicons (primers A571F and UA1204R).

The length was around 650 bp and given based on the suggestion (page 3, line 63).

- Page 4, line 31: Was the same annealing temperature (50°C) used for eubacteria and archaea?

Yes. And we have made it out in the revision (page 3, line 66).

- Page 6, line 34: "According to Bonferroni..." : bad english, please rephrase.

We have rephrased this sentence as follows (page 4, lines 98-100). "A LIBSHUFF comparison of three libraries yielded the following the formula using the Bonferroni correction: $0.05=1-(1-a)^{k(k-1)}$, where *a* was the critical *P*-value and *k* was the number of libraries. The critical *P*-value was 0.0085 when three libraries were compared."

- Page 8, line 26: replace "were statistically significant different" by "were significantly different".

Changed as suggested (page 5, line 132).

- Page 8, line 58: replace "Total 121 sequences were" by "A total of 121 sequences was".

Changed as suggested (page 5, line 142).

- Page 14, line 50: replace "demonstrated" by "suggested": you have to be careful because the study is entirely based on PCR, which is not a quantitative method.

Changed as suggested (page 7, line 196).

- Page 15, line 20: replace "In the present study, Desulfobulbus is identified in library bS0615" by "In the present study, a Desulfobulbus related sequence was identified in library bS0615". Please give the similarity values between the sequences.

We have replaced "In the present study, Desulfobulbus is identified in library bS0615" by "A Desulfobulbus related sequence (bS0615-24), which shared 95% identity with the relative uncultured Desulfobulbus sp., was identified in library bS0615." (page 7, lines 199-201). And the similarity has been given in the sentence.

- Page 16, line 14: replace "didn't" by "did not".

The sentence has been changed as "Previously, ANME group from methane hydrate

sites was not detected, although sulfate-reducing bacteria were observed (Inagaki et al., 2006)." (page 8, lines 211-213) We appreciate all your precious comments. Thank you very much!

*Manuscript Click here to download Manuscript: revised-Bacterial and archaeal diversity in marine sediments from northern slope of the Sou

1 2		Microbial diversity of sediments from South China Sea
3 4 5	1	Bacterial and archaeal communities in the surface sediment
6 7 8	2	from the northern slope of the South China Sea
9	3	LIAO Li, ¹ XU Xue-Wei, ^{2,3} WANG Chun-Sheng, ^{2,3} ZHANG Dong-Sheng ^{1,2,3} and WU Min ¹
.1	4	(¹ College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China)
.2 .3	5	(² Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, State Oceanic
4 5	6	Administration, Hangzhou 310012, People's Republic of China)
.6 .7	7 8	(³ Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, People's Republic of China)
8 9	9	Correspondence: Wu Min or Xu Xue-Wei; Email: wumin@zju.edu.cn, xuxw@sio.org.cn
1	10	
2 3	11	Abstract: Microbial diversity of sediments from the northern slope of the South China Sea was
:4 :5	12	studied by constructing bacterial and archaeal 16S rRNA gene clone libraries. Fourteen bacterial
6 7	13	phylogenetic groups were detected, including Gammaproteobacteria, Deltaproteobacteria,
8 9	14	Planctomycetes, Alpha proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Chloroflexi,
0 1	15	Acidobacteria, Betaproteobacteria, Nitrospirae, candidate divisions OP8 and OP11, and an
2 3	16	unknown group. Gammaproteobacteria was the predominant group in bacterial libraries with
4 5	17	percentages ranging from 31.8% to 63.2%. However, archaeal libraries had relatively lower
6 7	18	diversity, with most clones belonging to marine archaeal group I uncultured Crenarchaeota. In
8 9	19	addition, two novel euryarchaeal clones were detected not to match any culture-dependent isolates
0 1	20	or culture-independent groups. Compared with other gas hydrate-rich ecosystems and different
2 3	21	areas of the South China Sea, a distinct microbial community was revealed in this study.
4 5	22	
6 7	23	Key words: 16S rRNA; Library; Diversity; South China Sea
8 9 0	24	
1 2	25	INTRODUCTION
3 4	26	
5 6	27	The South China Sea (SCS) close to the West Pacific "warm pool" is the biggest and deepest
- 7 8	28	sea of China, as well as one of the largest marginal seas in the world (Lai et al., 2007, Li et al.,
9 0 1	29	2008b). Gas hydrates in deep marine environments are solid compounds which contain mainly
∠ 3 4		1

methane and water, formed due to high pressure, low temperature, abundant gas, and other unknown factors under deep-sea conditions (Mills et al., 2005). The South China Sea exhibits a great potential for gas hydrates presence. The north slope covers an area of 21×10^4 km², which takes up approximately 6% of total area of the South China Sea (Yu et al., 2004). Like many other continental slope margins, it is an important component of gas hydrate-bearing area in the South China Sea (Lin et al., 2005; Wu et al., 2008). Microorganisms play a significant role in the formation of gas hydrates (Kvenvolden, 1995). Microbial communities can be apparently influenced by the presence of gas hydrates (Inagaki et al., 2006). However, only a few studies have been carried out to survey the microbial diversity of the South China Sea, including Qiongdongnan Basin (Jiang et al., 2007), Xisha Trough (Li et al., 2008b), north slope (17°57.70' N, 114°57.33' E) (Wang and Li, 2008) and south slope (Li et al., 2008a). The diverse microbial communities living in vast area of the South China Sea are still poorly known. In this study, we investigated the diversity of bacteria and archaea in marine sediments from three sites on the northern slope of the South China Sea. MATERIALS AND METHODS Sampling and sites information Characteristics of three sampling sites were described in Table 1. Sediment samples from the upper 35 cm of the seabed were collected by multicorer on the northern slope of the South China Sea in the summer of 2006, and stored at -80° C until transported to laboratory for storage at -20° C. Muddy sediment cores with depth 0-5 cm (approximately 50 g wet weight) from three sampling sites were used for diversity analysis. All processes were aseptic to avoid contamination. DNA extraction and PCR amplification Total genomic DNA in 500 mg sediment from each sample was extracted directly using FastDNA-Spin Kit for soil (Q-BIOgene, Carlsbad, CA, USA), as described previously (Polymenakou et al., 2005). The DNA extracts were diluted 10-fold prior to PCR amplification to reduce inhibition by contaminants. Bacterial 16S rRNA gene was amplified by PCR with universal primer 1492r (5'-GGTTACCTTGTTACGACTT-3') (Eden, 1991; Dojka et al., 1998b) and

Microbial diversity of sediments from South China Sea

60	bacterial specific primer 27f (5'-AGAGTTTGATCCTGGCTCAG-3') (Dojka et al., 1998b; Tanner
61	et al., 1998). Forward primer A571F (5'-GCCTAAAGCGTCCGTAGC-3') and reverse primer
62	UA1204R (5'-TTCGGGGGCATACTGACCT-3') were used to amplify archaeal partial 16S rRNA
63	gene (around 650 bp) (Baker et al., 2003). PCR reaction mixtures contained 1 to 4 ng diluted DNA
64	extracts, 1× PCR buffer (1.5 mmol/L MgCl ₂ , 10 mmol/L Tris-HCl (pH 8.3), 50 mmol/L KCl), 0.4
65	μ mol/L of each primer, 200 μ mol/L dNTPs and 2 U Taq DNA polymerase (TaKaRa, Japan),
66	adding MillQ water to a final volume of 50 μ l. Thermal cycling for both bacteria and archaea was
67	modified to reduce PCR bias as follows, 94°C for 5 min, followed by 29 cycles of 94°C for 30 s,
68	50°C for 30 s, and 72°C for 1.5 min, and a final extension at 72°C for 10 min. Each site was
69	amplified in two replicate PCR reactions of 50 µl. Negative (no-template) control was used to
70	exclude contamination. PCR products were electrophoresed in 1.5% (w/v) low-melting agarose
71	gels and extracted with the AxyPrep DNA Gel Extraction kit (Axygen, USA).
72	
73	Cloning and sequencing
74	Bacterial and archaeal libraries were constructed for each site with the corresponding name
75	bS0610, bS0615 and bS0604 for bacterial libraries, and aS0610, aS0615 and aS0604 for archaeal
76	libraries, respectively. The equivalent amount of PCR products of each sample were cloned into
77	pMD19-T vectors (TaKaRa, Japan), and transformed into Escherichia coli DH5a competent cells.
78	Transformants were screened out by the blue-white screening system and picked out randomly for
79	plasmids extraction. Recombinant plasmids were identified by agarose gel electrophoresis after
80	digestion with two restriction enzymes BamHI and HindIII (TaKaRa, Japan), and sequenced using
81	primer 27f for bacterial clones and A571F for archaeal clones on an ABI 3730 sequencer at
82	Chinese National Human Genome Center at Shanghai. Only sequences over 600 bases with sound
83	quality were used for further analysis. Sequences were checked for chimeras with
84	CHECK_CHIMERA software of Ribosomal Database Project II
85	(http://rdp8.cme.msu.edu/html/index.html) (Maidak et al., 2001), and cross-checked with Pintail
86	program (http://www.bioinformatics-toolkit.org) (Ashelford et al., 2005).
87	
88	Statistical analysis of diversity and differences between libraries
89	Chimera-free sequences in each library were aligned separately by CLUSTALW online
	3

	Microbial diversity of sediments from South China Sea
90	(http://align.genome.jp/), and the phylip output format files were used to calculate distance
91	matrices by DNADIST program contained in Phylip 3.67 program package
92	(http://evolution.genetics.washington.edu/phylip.html). Distance-based OTU and Richness
93	program (DOTUR, http://www.plantpath.wisc.edu/fac/joh/dotur.html) (Schloss and Handelsman,
94	2005) was used to assign OTUs and calculate diversity indices including ACE (Chao, 1987),
95	Chao1 (Kemp and Aller, 2004), simpson and shannon (Zhang et al., 2008).
96	To determine the significance of differences between bacterial libraries, web LIBSHUFF
97	version 0.96 (http://libshuff.mib.uga.edu/) was used following Singleton method (Singleton et al.
98	2001). A LIBSHUFF comparison of libraries yielded the following the formula using the
99	Bonferroni correction: $0.05=1-(1-a)^{k(k-1)}$, where <i>a</i> was the critical <i>P</i> -value and <i>k</i> was the number
100	of libraries. The critical <i>P</i> -value was 0.0085 when three libraries were compared. If any
101	comparison of two libraries had a lower <i>P</i> -value below or at 0.0085, then there was a 95%
102	confidence to believe those two libraries were significantly different in community composition.
103	
104	Phylogenetic analysis
105	One representative clone was chosen for each OTU, and then submitted to BLAST program
106	and Ribosomal Database Project II program online to obtain the closest published relatives.
107	Phylogenetic trees were constructed by MEGA software version 4.0 using Neighbor-Joining
108	method (Saitou and Nei, 1987) with Kimura 2-parameter model.
109	
110	GenBank accession numbers
111	All partial 16S rRNA gene sequences determined in the present study were deposited in
112	GenBank under the accession numbers EU886378 to EU886464 for bacterial clones, and
113	GQ180871 to GQ180903 for archaeal clones.
114	
115	RESULTS
116	
117	Diversity analysis and differences between bacterial libraries
118	OTUs and diversity estimators were all determined at 3% 16S rDNA sequence difference
119	level by DOTUR program (Table 2). In all, 22, 26 and 32 OTUs were obtained in three bacterial
	4

120	libraries bS0610, bS0604 and bS0615, respectively. However, archaeal libraries had much fewer
121	OTUs, with only 5, 5 and 6 OTUs assigned in libraries aS0610, aS0604 and aS0615, respectively.
122	As depicted in Fig. 1a, rarefaction curves for archaeal libraries had almost reached asymptote,
123	indicating that the archaeal community was well sampled with low diversity. In contrast,
124	rarefaction curves for bacterial libraries failed to approach a plateau (Fig. 1b), indicating a high
125	bacterial diversity. Previous studies suggested that the rarefaction curves were not saturated even
126	if hundreds of bacterial 16S rRNA gene clones were retrieved. But they did reveal important
127	information about the relative diversity. The curves for bacterial libraries (Fig. 1b) revealed the
128	same tendency with the curves for archaeal libraries (Fig. 1a) in which diversity appeared to
129	increase with depth, supported by the diversity estimators (Table 2).
130	The web LIBSHUFF program (for a review see Singleton et al., 2001) was used to determine
131	the significance of differences between libraries. P -value of pairwise comparisons was 0.001 (<
132	the critical <i>P</i> -value 0.0085) in our comparisons, indicating libraries were significantly different in
133	community composition, with a 95% confidence. Besides, the difference between homologous
134	coverage curve and heterologous coverage curve was determined by the distribution of delta- C
135	(ΔC) as a function of evolutionary distance (D) (solid red curves, Fig. 2). If the two libraries were
136	identical, the value of delta- $C(\Delta C)$ would have been very small. Our results of all the comparisons
137	showed significant differences between libraries, with considerable delta- $C(\Delta C)$ values at
138	evolutionary Distance (D) below 0.2. All these results support a conclusion that bacterial libraries
139	had significantly different community composition.
140	
141	Analysis of bacterial and archaeal libraries
142	A total of 121 sequences were generated from three bacterial libraries, with fourteen different
143	phylogenetic groups being identified (Table 3). Proteobacteria (with 76 clones) dominated in the
144	bacterial community, Gammaproteobacteria in particular, which took up 63.2%, 41.0% and 31.8%
145	in libraries bS0610, bS0604 and bS0615, respectively (Fig. 3). Gammaproteobacteria,
146	Deltaproteobacteria, Firmicutes, Bacteroidetes and Chloroflexi were commonly detected in three
147	libraries, while Betaproteobacteria, Nitrospirae, Candidate divisions OP8 and OP11 were seldom
148	detected, with only one clone in each group. Taking three libraries as a whole represent of the

- 149 South China Sea, bacteria affiliated with Alphaproteobacteria, Gammaproteobacteria,

150	Deltaproteobacteria and Planctomycetes took up 9.1%, 44.6%, 8.3% and 9.9% of the total 121
151	clones, respectively. The percentages of remaining phylogenetic groups ranged from 0.8% to
152	6.6%.
153	Archaeal libraries were much simpler with a lower diversity (Fig. 5). Marine archaeal group I
154	was the dominant group, which took up 100%, 83% and 78.6% of aS0604, aS0610 and aS0615,
155	respectively. Furthermore, candidatus <i>Nitrososphaera</i> , Deep-Sea Archaeal Group (DSAG) and an
156	unknown group were found within Crenarchaea. Crenarchaea took up 96% of the total archaeal
157	clones. Merely two clones from library aS0610 (aS0610-10 and aS0610-16) belonged to
158	Euryarchaea.
159	
160	Phylogenetic analysis of bacterial libraries
161	In total, seven, nine and thirteen phylogenetic groups were identified in bacterial libraries
162	bS0610, bS0604 and bS0615, respectively (Fig. 4). The most abundant OTU was affiliated to
163	Gammaproteobacteria with the closest relative Pantoea agglomerans sp. RI22 (DQ530141). A
164	few OTUs were affiliated with established groups which contained isolated representatives,
165	including Pantoea, Pseudomonas and Stenotrophomonas within Gammaproteobacteria,
166	Ochrobactrum and Sphingomonas within Alphaproteobacteria, Desulfobulbus and Enhygromyxa
167	within Deltaproteobacteria, and Clostridium within Firmicutes. However, the majority of bacterial
168	clones were closely related to uncultured clones from marine environments, except for a few ones
169	from non-marine environments such as Chinese rice field and uranium mining waste piles. Two
170	novel OTUs (bS0604-37 and bS0615-35), assigned into unknown group, were found in libraries
171	bS0604 and bS0615. OTU bS0604-37 (two related clones) was closest to clone Creta1-C11
172	(AY533950) obtained from oxic surface sediments, and formed an independent branch which was
173	far away from the remaining groups (Fig. 4b). OTU bS0615-35, distantly related to clone
174	VHS-B3-74 (DQ394961) from harbor sediment with 86% identity, formed a sister branch with
175	candidate division OP8 (Fig. 4c).
176	
177	Phylogenetic analysis of archaeal libraries
178	A distinct diversity of archaeal community was revealed (Fig. 5). In total, 100%, 83% and
179	78.6% of archaeal clones in libraries aS0604, aS0610 and aS0615 belonged to marine archaeal

180	group I, respectively. Relatives of this group included uncultured clones retrieved from surface
181	sediments at 2164 m and 3406 m depth of the Weddel Sea, Antarctica (Gillan and Danis, 2007)
182	and the isolate Nitrosopumilus maritimus SCM1 (DQ085097). All clones of marine archaeal group
183	I shared high similarity (>96%) with each other, and formed a sister branch with candidatus
184	Nitrososphaera containing clone aS0615-4. In addition, Deep-Sea Archaeal Group (DSAG) and an
185	unknown group were detected within Crenarchaeaota. Only two clones aS0610-16 and aS0610-10
186	were grouped into Euryarchaeota, and they shared low similarity with other isolates or established
187	groups within Euryarchaeota.
188	
189	DISCUSSION
190	
191	Proteobacteria are the dominant bacteria in all three libraries, which is consistent with
192	previous diversity investigation of marine sediments from the South China Sea (Xu et al., 2004;
193	Lai et al., 2007; Li et al., 2008a; 2008b). Because they are the most metabolically diverse bacteria
194	by far, Proteobacteria appear in various environments and play crucial roles in cycling of
195	chemical elements. Even in deep-sea environments, they can still dominate in the bacterial
196	community, which is also suggested by our results.
197	The northern slope of the South China Sea is considered to contain large amount of
198	oil/gas/gas-hydrate resources (Jiang et al., 2007). The microbial community may be special in
199	such an environment. Deltaproteobacteria are found in all three libraries. A Desulfobulbus related
200	sequence (bS0615-24), which shared 95% identity with the relative uncultured Desulfobulbus sp.,
201	was identified in library bS0615. Some species isolated from oilfields or water-oil separation
202	system belong to Desulfobulbus (Lien et al., 1998). Furthermore, it is an interesting discovery that
203	sulfate-reducing bacteria (SRB) are syntrophically associated with uncultured anaerobic
204	methane-oxidizing archaea (ANME) to form a complex consortia in methane-rich deep marine
205	sediments, and exhaust a large portion of methane from marine ecosystem (Pernthaler et al., 2008).
206	Desulfobulbus is a commonly found syntrophic partner in the consortia (Niemann et al., 2006).
207	Thus, the detection of <i>Desulfobulbus</i> may give some clues to understand the particular role of
208	bacterial community inhabiting in our sampling environment. These related clones may participate
209	in sulfur cycle through sulfate reduction, and cooperate with ANME group to consume methane.

210	However, no ANME group is detected in our archaeal libraries, except two Euryarchaeota clones
211	which are distantly related to methanogenic bacteria such as Methanosphaera. Previously, ANME
212	group from methane hydrate sites was not detected, although sulfate-reducing bacteria were
213	observed (Inagaki et al., 2006). A possible explanation is that bacterial biomass is much greater
214	than archaeal biomass in these ecosystems, which leads to the miss of ANME groups in
215	culture-independent analysis.
216	Bacterial JS1 candidate group is a major methane-associated group recovered from Pacific
217	Ocean margins including Peru margin and Cascadia margin, where methane hydrates are in great
218	concentration, and acts as an indicator of methane presence (Inagaki et al., 2006). Planctomycetes
219	are also found abundant in these methane hydrate-rich sediments. However, no bacterial clone is
220	affiliated with JS1 group in our libraries. Considering previous studies of the South China Sea (Xu
221	et al., 2004; Jiang et al., 2007; Lai et al., 2007; Li et al., 2008a; 2008b, Wang and Li, 2008), no
222	JS1 group has ever been discovered in the South China Sea margins, thus, a hypothesis is
223	proposed that JS1 group is location-specific and can not be used as an universal indicator for
224	methane presence in different marine ecosystems. In our study, Planctomycetes is detected as the
225	most abundant group besides Proteobacteria in two libraries (bS0604 and bS0615) constructed
226	from deeper sediment (> 1200 m water depth), but absent in library bS0610 constructed from
227	shallow sediment (546 m water depth). This result suggests Planctomycetes prefer deeper depth in
228	our sampling environment.
229	Chloroflexi (or Green non-sulfur bacteria) can be detected in all three libraries with only one
230	clone in each library. Previous study of late Pleistocene organic-rich sediments (sapropels) from
231	the eastern Mediterranean Sea has showed as high as 70% of total bacteria belonged to uncultured
232	green non-sulfur bacteria, and this high percentage of green non-sulfur bacteria was associated
233	with organic-rich sediments (Coolen et al., 2002). Chloroflexi is also found to be abundant in
234	organic-rich, hydrate-free sites of the Pacific Ocean margins, while consists a very small portion in
235	hydrate-rich sediment (Inagaki et al., 2006). The detection of few Chloroflexi clones in our
236	libraries is consistent with the character of methane hydrate-bearing ecosystem.
237	Candidate divisions OP8 and OP11 are unique in library bS0615 constructed from the

- Obsidian Pool in Yellowstone National Park of America (Hugenholtz et al., 1998). These bacteria

deepest sediment sample. The candidate division OP series were firstly discovered in a hot spring

1 2 3 4 5	
6 7 8 9 10	
11 12 13 14 15	
16 17 18 19 20	
21 22 23 24 25	
20 27 28 29 30 21	
32 33 34 35 36	
37 38 39 40 41	
42 43 44 45 46	
47 48 49 50 51	
52 53 54 55 56	
57 58 59 60	
©⊥ 62 63	

240	are distantly related to known isolates and clones, and have not been cultured till now. Our
241	discovery of the candidate divisions OP8 and OP11 is consistent with previous studies in which
242	these OP series were also identified in hydrocarbon-containing soil samples under methanogenic
243	conditions (Dojka et al., 1998a; Hugenholtz et al., 1998) and sediments from the South China Sea
244	(Li et al., 2008a). This consistency may indicate a non-negligible role of these candidate divisions
245	in hydrocarbon or methane-bearing environments.
246	Besides, some OTUs are affiliated with clones obtained from carbonate sediments
247	(bS0610-31, bS0604-25 and bS0604-38), and methane hydrate-bearing sediments (bS0615-50 and
248	bS0615-29). These environments are characterized by high content of carbon, indicating a possible
249	role in carbon cycling of these related clones.
250	Archaeal community inhabiting the northern slope of the South China Sea has a low diversity.
251	Only two clones (aS0610-10 and aS0610-16) in library aS0610 belong to Euryarchaeota, while
252	the remaining clones are all grouped within Crenarchaeota. Our results are consistent with
253	previous studies which have discovered that Euryarchaeota are more abundant in upper marine
254	water column, while Crenarchaeota are predominant in deeper sediments (Massana et al., 1997;
255	Karner et al., 2001; Church et al., 2003). Marine archaeal group I is the most dominant part within
256	Crenarchaeota, which accounts for 83%, 78.6% and 100% in libraries aS0610, aS0615 and
257	aS0604, respectively. Marine archaeal group I, also named as archaeobacterium group 1, archaeal
258	group I and marine group I Crenarchaeota, was first found in oxygenated coastal surface waters of
259	North America and abundant in marine environments (Delong, 1992). Previous studies have
260	revealed that marine archaeal group I Crenarchaeota, including the first isolated
261	ammonia-oxidizing archaeon Nitrosopumilus maritimus (Konneke et al., 2005), play important
262	roles in nitrogen cycling (Leininger et al., 2006; Gillan and Danis, 2007). Due to the ubiquity of
263	the marine archaeal group I in various environments, the roles of these Crenarchaeota are
264	supposed to be more versatile and key. Marine archaeal group I is possibly the most abundant
265	archaeal group on Earth (Wang et al., 2005). Unexpectedly, marine archaeal group I was also
266	found in a large proportion in methane hydrate-rich sediments from Peru margin and Cascadia
267	margin. Thus, it is believed that marine archaeal group I might be an unusual group which plays
268	an unknown role in methane metabolism.
269	Besides marine archaeal group I, candidatus Nitrososphaera and Deep-Sea Archaeal Group

(DSAG, also named as Marine Benthic Group B) are also detected within Crenarchaeota. Candidatus Nitrososphaera is the first described thermophilic ammonia-oxidizing Crenarchaea obtained from Garga hot spring enrichments (Hatzenpichler et al., 2008), and plays an important role in nitrogen cycling. DSAG is a dominant group detected in methane hydrates sites of Peru margin and Cascadia margin (Inagaki et al., 2006). DSAG also presents in our library, although there is only one related clone. No methanogens was found in our archaeal libraries. Previous studies showed that only a small proportion of methanogens in hydrate-bearing sediments could be detected using methanogen-specific primers (Inagaki et al., 2006). Thus, it is possible that methanogens might be missed using universal archaeal primers. Therefore, a hypothesis can be proposed that microbial community inhabiting in sampling sediments from northern slope of the South China Sea may participate in nitrogen, carbon and sulfur cycling, with the dominance of nitrogen cycling in archaeal community. Further study is needed to capture more organisms. Since our clones are mostly close to uncultured relatives from environments, culture-dependent experiments should be taken to obtain isolates. Novel bacteria and archaea detected in the present study are also worth analyzing further. This study provides us a primary knowledge of microbial diversity in sediments from the northern slope of the South China Sea, and indicates a distinct microbial community that contains potential novel species and possibly even more that can be expected. CONCLUSION To conclude, both bacterial and archaeal diversity were studied by 16S rRNA gene clone libraries constructed from sediments on the northern slope of the South China Sea at different depth. Fourteen phylogenetic groups including an unknown group were detected among three bacterial libraries. Proteobacteria dominated in the bacterial community, followed by Planctomycetes and Firmicutes. Most clones obtained in the present study were affiliated with

Microbial diversity of sediments from South China Sea

- uncultured bacteria from marine ecosystems, including methane hydrate-bearing environment,
- deep-sea sediments and hydrothermal vents and so on. Archaeal community was much simpler
- with a lower diversity, and marine archaeal group I dominated significantly in archaeal libraries.

б

Microbial	diversity	of sediments	from	South	China	Sea
-----------	-----------	--------------	------	-------	-------	-----

300	Besides, two novel clones were found within Euryarchaeota. Microbial communities in the
301	sampling sediments from northern slope of the South China Sea played an important role in
302	nitrogen, carbon and sulfur cycling. The present study disclosed a distinct microbial community,
303	and provided a primary analysis of microbial diversity of this special marine environment.
304	
305	ACKNOWI EDGMENTS
200	
306	The authors thank Professor M.Y. Long and Y. Cao for English editing on the manuscript.
307	This work was supported by grants from Open Fund of the Key Laboratory of Marine Geology
308	and Environment, China Academy of Sciences (MGE2008KG05) and the Ministry of Science and
309	Technology of China (973 Program, 2004CB719604-3; 863 Program, 2007AA021305).
310	
311	References
312	Ashelford, K.E., Chuzhanova, N.A., Fry, J.C., Jones, A.J., Weightman, A.J., 2005. At least 1 in 20 16S
313	rRNA sequence records currently held in public repositories is estimated to contain substantial
314	anomalies. Appl. Environ. Microbiol., 71(12):7724-7736.
315	Baker, G.C., Smith, J.J., Cowan, D.A., 2003. Review and re-analysis of domain-specific 16S primers. J.
16	Microbiol. Methods, 55(3):541-555.
317	Chao, A., 1987. Estimating the population-size for capture recapture data with unequal catchability.
18	Biometrics, 43(4):783-791.
19	Church, M.J., Delong, E.F., Ducklow, H.W., Karner, M.B., Preston, C.M., Karl, D.M., 2003.
320	Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the
321	Antarctic Peninsula. Limnol. Oceanogr., 48(5):1893-1902.
322	Coolen, M.J.L., Cypionka, H., Sass, A.M., Sass, H., Overmann, J., 2002. Ongoing modification of
323	Mediterranean Pleistocene sapropels mediated by prokaryotes. Science, 296(5577):2407-2410.
324	[doi:10.1126/science.1071893].
325	Dojka, M.A., Hugenholtz, P., Haack, S.K., Pace, N.R., 1998a. Microbial diversity in a hydrocarbon-
326	and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ.
327	Microbiol., 64(10):3869-3877.
328 220	Eden P.A., Schmidt, T.M., Blakemore R.P., Pace N.R., 1991. Phylogenetic analysis of Aquaspirillum
329 220	magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int. J. Syst.
221	Bacteriol., 41(2):324-325.
222	Delong, E.F., 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. U. S. A.,
222 222	89(12):5685-5689.
221	Xu, F., Dai, X., Chen, Y.Q., Zhou, H., Cai, J.H., Qu, H.H., 2004. Phylogenetic diversity of bacteria and
334 335	archaea in the Nansha marine sediments, as determined by 165 rDNA analysis. <i>Oceanologia et</i>
555	Cillan D.C. Danis B. 2007. The archeobostarial communities in Antonatic bothymologia as dimenta
336	VIII and D.V., Danis, D., 2007. The archaeolacienal communities in Antaicuc Dathydelagic sediments.

1 2		Microbial diversity of sediments from South China Sea
3	220	
4 5	220	Hugenholtz, P., Pitulle, C., Hershberger, K.L., Pace, N.R., 1998. Novel division level bacterial diversity
6	340	In a renowstone not spring. J. Bacteriol., 180(2):300-370.
7	340 341	Hugnes, J.B., Helimann, J.J., Ricketts, I.H., Bonannan, B.J.M., 2001. Counting the uncountable:
8	242	statistical approaches to estimating microbial diversity. Appl. Environ. Microbiol.,
10	34Z	67(10):4399-4406.
11	343	Inagaki, F., Nunoura, T., Nakagawa, S., Teske, A., Lever, M., Lauer, A., Suzuki, M., Takai, K.,
12	344	Delwiche, M., Colwell, F.S., Nealson, K.H., Horikoshi, K., D'hondt, S., Jørgensen, B.B., 2006.
13	345	Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine
14 15	346	sediments on the Pacific Ocean Margin. Proc. Natl. Acad. Sci. U. S. A., 103(8):2815-2820.
16	347	Jiang, H.C., Dong, H.L., Ji, S.S., Ye, Y., Wu, N.Y., 2007. Microbial diversity in the deep marine
17	348	sediments from the Qiongdongnan Basin in South China Sea. Geomicrobiol. J., 24:505-517.
18	349	[doi:10.1080/01490450701572473]
19 20	350	Karner, M.B., Delong, E.F., Karl, D.M., 2001. Archaeal dominance in the mesopelagic zone of the
20	351	Pacific Ocean. Nature, 409(6819):507-510.
22	352	Könneke, M., Bernhard, A.E., De La Torre, J.R., Walker, C.B., Waterbury, J.B., Stahl, D.A., 2005.
23	353	Isolation of an autotrophic ammonia-oxidizing marine archaeon. <i>Nature</i> , 437(7058):543-546.
24 25	354	Kvenvolden, K.A., 1995. A review of the geochemistry of methane in natural gas hydrate. Org.
26	355	Geochem., 23(11-12):997-1008.
27	356	Lai X T Zeng X F Fang S Huang YL Cao L X Zhou S N 2006 Denaturing gradient gel
28	357	electronhoresis (DGGE) analysis of hacterial community composition in deen-sea sediments of
29	358	the South China Sea. World I. Microbiol. Biotechnol. 22:1337-1345
30	359	Laininger S. Urich T. Schleter M. Schwark I. Oi I. Nicel C.W. Prosser II. Schuster S.C.
32	360	Schlanger, C. 2006. Archaes and deminate emerge emerging avidining analysmetres in soils. Network
33	261	Schleper, C., 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. <i>Nature</i> ,
34 25	262	442(7104):806-809.
35 36	302	Li, T., Wang, P., Wang, P.X., 2008a. Bacterial and archaeal diversity in surface sediment from the south
37	303	slope of the South China Sea. <i>WeishengwuXuebao</i> , 48(3):323-329 (in Chinese).
38	364	Li, T., Wang, P., Wang, P.X., 2008b. Microbial diversity in surface sediments of the Xisha Trough, the
39	365	South China Sea. Acta Ecologica Sinica, 28(3):1166-1173.
40 41	366	Lien, T., Madsen, M., Steen, I.H., Gjerdevik, K., 1998. Desulfobulbus rhabdoformis sp. nov., a sulfate
42	367	reducer from a water-oil separation system. Int. J. Syst. Bacteriol., 48(2):469-474.
43	368	[doi:10.1099/00207713-48-2-469]
44	369	Lin, W.D., Shen, P., Xu, Y.C., Zhou, Y.Z., 2005. Geochemical characteristics and source of hydrocarbon
45 46	370	gases of recent sediment from South China Sea. Acta Sedimentologica Sinica, 23(1):170-174 (in
47	371	Chinese).
48	372	Maidak, B.L., Cole, J.R., Lilburn, T.G., Parker, C.T., Saxman, P.R., Farris, R.J., Garrity, G.M., Olsen,
49	373	G.J., Schmidt, T.M., Tiedje, J.M., 2001. The RDP-II (Ribosomal Database Project). Nucleic Acids
50 51	374	Res., 29(1):173-174.
52	375	Mills, H.J., Martinez, R.J., Story, S., Sobecky, P.A., 2005. Characterization of microbial community
53	376	structure in gulf of Mexico gas hydrates: comparative analysis of DNA- and RNA-derived clone
54	377	libraries Appl Environ Microbiol 71(6):3235-3247 [doi:10.1128/aem 71.6.3235-3247 2005]
55	378	Niemann H Lösekann T De Beer D Flyert M Nadalig T Knittel K Amann R Sauter F I
50	379	Schluter M Klages M Foucher IP Roeting A 2006 Noval microbial communities of the
58	380	Haakon Moshy mud volcano and their role as a methane sink Nature AA3(7113).954 959
59	381	Demoted on A E Brown C.T. Coffredi S.K. Emberry T. Omber VI. 2009 Dimension
60 61	301	r chiulaich, A., Dekas, A.E., Brown, C.I., Golffeur, S.K., Effidaye, I., Orphan, V.J., 2008. Diverse
o⊥ 62		
63		12
64		
65		

1		Microbial diversity of sediments from South China Sea
⊿ 3		
4	382	syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and
5	383	metagenomics. Proc. Natl. Acad. Sci. U. S. A., 105(19):7052-7057.
6	384	[doi:10.1073/pnas.0711303105.]
7 8	385	Polymenakou, P.N., Bertilsson, S., Tselepides, A., Stephanou, E.G. 2005, Links between geographic
9	386	location environmental factors and microbial community composition in sediments of the
10	387	Eastern Mediterranean Sea Microb Ecol $49(3):367-378$
11	388	Massana R. Murray A.E. Preston C.M. Delong F.E. 1997 Vertical distribution and phylogenetic
13	389	characterization of marine planktonic Archaes in the Santa Barbara Channel Ann. Environ
14	300	Misseliel (2(1):50.56
15	390	Microbiol., 65(1):50-50.
16	202	Hatzenpichier, K., Lebedeva, E. V., Spieck, E., Stoecker, K., Richter, A., Daims, H., Wagner, M., 2008.
17 18	392 202	A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. <i>Proc. Natl. Acad.</i>
19	393 204	<i>Sci. U. S. A.</i> , 105(6):2134-2139.
20	394 205	Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic
21	395	trees. Mol. Biol. Evol., 4(4):406-425.
22	396	Schloss, P.D., Handelsman, J., 2005. Introducing DOTUR, a computer program for defining
24	397	operational taxonomic units and estimating species richness. Appl. Environ. Microbiol.,
25	398	71(3):1501-1506. [doi:10.1128/aem.71.3.1501-1506.2005 issn 0099-2240]
26	399	Singleton, D.R., Furlong, M.A., Rathbun, S.L., Whitman, W.B., 2001. Quantitative comparisons of 16S
27	400	rRNA gene sequence libraries from environmental samples. Appl. Environ. Microbiol.,
29	401	67(9):4374-4376.
30	402	Tanner, M.A., Goebel, B.M., Dojka, M.A., Pace, N.R., 1998. Specific ribosomal DNA sequences from
31	403	diverse environmental settings correlate with experimental contaminants. Appl. Environ.
32	404	Microbiol., 64(8):3110-3113.
34	405	Wang, P., Li, T., 2008. Phylogenetic analysis of bacterial community in deep-sea sediment from
35	406	northern slope of the South China Sea. Marine Sciences, 32(4):36-39 (in Chinese).
36	407	Wang, P., Xiao, X., Wang, F., 2005. Phylogenetic analysis of Archaea in the deep-sea sediments of west
37	408	Pacific Warm Pool. Extremophiles, 9(3):209-217.
39	409	Wu, N.Y., Yang, S.X., Zhang, H.Q., Liang, J.Q., Wang, H.B., Su, X., Fu, S.Y., 2008. Preliminary
40	410	discussion on gas hydrate reservoir system of shenhu area, north slope of south china sea.
41	411	Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008): Vancouver,
42 43	412	British Columbia, CANADA, July 6-10, 2008.
44	413	Yu, X.H., Zhang, Z.J., Su, X., Chen, F., Li, Y., 2004. Primary discussion on accumulation conditions for
45	414	sedimentation of gas hydrate and its distribution in South China Sea. <i>Earth Science Frontiers</i>
46 47	415	(China University of Geosciences, Beijing), 11(1):311-315 (in Chinese).
48	416	Zhang, W., Ki, J.S., Oian, P.Y., 2008. Microbial diversity in polluted harbor sediments I: Bacterial
49	417	community assessment based on four clone libraries of 16S rDNA. Estuar. Coast. Shelf Sci.
50	418	76:668-681. [doi:10.1016/j.ecss.2007.07.040]ISSN 0272-7714]
51 52	419	
53	420	
54	421	
55	422	
50 57	422	
58	423	
59	-⊤∠- 1 ∕125	
60 61	723	
o⊥ 62		
63		13
64		
65		

Table 1. Information of sampling sites.

Sites	Longitude	Latitude	Depth of water (m)	Seafloor
S0610	118°53′	22°08′	546	Mud
S0604	118°40′	21°57′	1211	Mud
S0615	119°06′	22°05′	1285	Mud

Table 2. Diversity indices (Calculated at 0.03 difference level) of bacterial and archaeal libraries.

Library	No. of	OTUs	ACE	Chao1	Shannon	Simpson
	Clones					
bS0610	38	22	232.000	117	2.434	0.172
bS0604	39	26	156.114	79	2.965	0.057
bS0615	44	32	422.395	235	3.154	0.052
aS0610	18	5	11.000	7	0.961	0.517
aS0604	18	5	5.628	5	1.382	0.249
aS0615	14	6	13.656	12	1.475	0.231
				14		

	Dhula constis constra	Libraries	Libraries ^a			
	Phylogenetic groups	bS0610	bS0604	bS0615		
	Alphaproteobacteria	0	4	7		
	Beltaproteobacteria	0	0	1		
	Gammaproteobacteria	24	16	14		
	Deltaproteobacteria	4	2	4		
	Planctomycetes	0	7	5		
	Firmicutes	2	3	3		
	Actinobacteria	0	3	2		
	Acidobacteria	3	0	2		
	Bacteroidetes	3	1	2		
	Nitrospirae	1	0	0		
	Chloroflexi	1	1	1		
	Candidate division OP8	0	0	1		
	Candidate division OP11	0	0	1		
	Unknown group	0	2	1		
445	a. Number of clones affiliated with e	each phylogene	etic group).		
446						
447						
448						
449						
450						
451						
452						
453						
453						

Table 3. 16S rDNA phylotype distribution in three bacterial libraries.

Fig. 1. Rarefaction curves for archaeal (a) and bacterial (b) clone libraries. The observed numbers
of OTUs identified by DOTUR program at 3% difference level are plotted against number of
clones in library. The curve of 1:1 reference means that each sequenced clone belongs to a unique
OTU. Yellow curve (forks) represents the rarefaction curve for total bacterial clones from three

- 459 libraries (b).

б

- 41 468
- 43 469
- 45 470
- 47 471

б

491 Fig. 3. 16S rDNA phylotype comparison of three bacterial libraries. Each color represents the

- ³⁹ 40 501
- 41 502
- 43 503

- 45 504
- 47 505

⁴⁹² corresponding phylogenetic group as given by cutline.

Microbial diversity of sediments from South China Sea

514	Fig. 4. Phylogenetic trees showing the relationship of bacterial 16S rDNA sequences in libraries
515	bS0610 (a), bS0604 (b) and bS0615 (c) to relatives in GenBank. The trees were constructed by
516	bootstrap neighbor-joining method in MEGA 4.0. Clones in bold were obtained in the present
517	study, and numbers in parentheses showed the number of related clones. The environments where
518	relative clones were obtained from were given in square brackets using different font color, i.e.,
519	non-hydrothermal marine environments were specified in blue font, hydrothermal environments in
520	red font, and non-marine environments in green font. Bootstrap values under 50% were not shown.
521	Aquifex pyrophilus was used as the outgroup. Bar, 0.05 substitutions per nucleotide position.
522	
523	
524	
525	
526	
527	
528	
529	
530	
531	
532	
533	
534	
535	
536	
537	
538	
539	
540	
541	
	22

