

Chemical oxygen demand removal in Na2SO4 saturated wastewater by cultivable halo-tolerant bacterial community

Journal:	CLEAN - Soil, Air, Water
Manuscript ID	clen.201400182.R4
Wiley - Manuscript type:	Research Paper
Date Submitted by the Author:	09-Mar-2015
Complete List of Authors:	Zhang, Wenwu; Zhejiang University, Pan, Jie; Zhejiang University, College of Life Sciences Hao, Pengying; Boston University, Department of Biology Zhen, Gang; Zhejiang University, College of Life Sciences Zhang, Zhenli; Zhejiang University, College of Life Sciences Wu, Min; Zhejiang University, College of Life Sciences
Keywords (select from list):	bacteria, COD, sewage sludge, wastewater
<u>*</u>	SCHOLARONE™ Manuscripts

Wiley-VCH

Chemical oxygen demand removal in Na₂SO₄ saturated wastewater by cultivable halo-tolerant bacterial community

Wen-wu Zhang^a, Jie Pan^a, Peng-ying Hao^b, Gang Zhen^c, Zhen-li Zhang^a, Min Wu^{a#}

^a College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China

^b Department of Biology, Boston University, Boston, Massachusetts, USA

^c Ocean Research Center, Zhejiang University, Zhoushan, Zhejiang, China

Running title: COD removal in saline wastewater by CHBC.

#Address correspondence to Min Wu, <u>wumin@zju.edu.cn</u>, 688, Yuhangtang Rd., Hangzhou, 310058, China.

Abbreviations: A_{600} , absorbance measured at 600nm wavelength; BOD₅, biochemical oxygen demand after 5 days; COD, chemical oxygen demand; CHBC, cultivable halo-tolerant bacterial community; DO, dissolved oxygen; MLSS, mixed liquor suspended solid; TDS, total dissolved solids.

The GenBank/EMBL/DDBJ accession numbers for the nearly complete 16S rRNA gene sequences of strains CB03, MN3-2, NH7-4, BY4, XM15, BYXT, AXY1, T211, HM4, PY3-1, YY1 are KF956044, KF956045, KF956046, KF956047, KF956048, KF956049, KF956050, KF956051, KF956052, KF956053, KF956054 respectively.

1 Abstract

2	Industrial wastewater with high Na_2SO_4 concentration is characterized by high
3	osmotic pressure and salinity, and requires pretreatment before discharging into cen-
4	tral treatment facilities. To date, few studies have addressed the COD removal in bio-
5	treatment of Na_2SO_4 wastewater. Here, a novel aerobic system for treating Na_2SO_4
6	wastewater was developed based on screening of halo-tolerant bacterial strains. The
7	system has maintained a stable chemical oxygen demand (COD) removal at > 90% in
8	saturated concentration (varied from 5% to 40% depends on temperature) of Na_2SO_4
9	for five years. Activated sludge was initially constructed by cultured strains of Hy-
10	phomicrobium sp. CB03, Dietzia sp. XM15, Staphylococcus sp. T211, Flavobacte-
11	rium sp. AXY1, Ochrobactrum sp. BY4, Bacillus sp. BYXT, Sphingobacterium
12	sp.YY1, Rhodococcus sp. NH7-4, Stappia sp. HM4, Microbacterium sp. PY3-1 and
13	Pseudomonas sp. MN3-2. Uncultured phylum TM7 was detected in sludge after ac-
14	climatization. The present aerobic cultivable halo-tolerant bacterial community
15	(CHBC) was successfully applied to large scale removal of organic pollutants in sa-
16	line wastewater.
17	
18	Keywords: COD, cultivable halo-tolerant bacteria, microbial community, saline

19 wastewater, sulfate.

2	
3	
4	
F	
5	
6	
7	
8	
õ	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
18	
19	
20	
21	
20	
22	
23	
24	
25	
20	
20	
27	
28	
29	
20	
30	
31	
32	
33	
24	
34	
35	
36	
37	
00	
38	
39	
40	
<u>4</u> 1	
40	
42	
43	
44	
45	
16	
40	
47	
48	
49	
50	
51	
52	
53	
50 54	
54	
55	
56	
57	
59	
50	
59	
~~	

21 **1. Introduction**

Sulfate-rich wastewater is generated by industrial processes that used sulfuric acid, 22 sulfite and sulfide. The high concentration of sulfate leads to increased osmotic pres-23 24 sure and high salinity of the wastewater. Under such condition, the acclimatization of 25 activated sludge used for biotreatment becomes severely inhibited. We postulate that the high osmolarity is directly responsible for the failure to acclimatize activate sludge; 26 27 however, we cannot rule out other factors at this point. Moreover, sulfate is reduced to sulfide in the anaerobic bioreactor, which increases the toxicity of the wastewater 28 29 hence further undermining the COD removal rate [1]. As such, biotreatment of sul-30 fate-rich wastewater remains a distinct challenge and underutilized despite its great 31 potential. Here, we describe a novel system that leverages halotolerant bacteria to 32 treat high salinity wastewaters. Halo-tolerant microorganisms and halophiles from archaea, bacteria and eukaryote 33 domains, can survive in extremely hypertonic environment. Much research has re-34 35 vealed the mechanisms underlying their halo-tolerance [2, 3]. Some halo-tolerant microbes not only thrive but also utilize organic compounds at an impressive rate under 36

high osmotic pressure [4], making them valuable candidates for the bio-treatment of
saline waste. However, few studies to date have investigated the performance of aerobic biotreatment method under high Na₂SO₄ concentration level.

In this study, a cultivable halo-tolerant bacterial community (CHBC) was developed to treat an extreme sulfate-rich wastewater : Na₂SO₄ saturated effluent (Na₂SO₄ concentration up to 400000 mg·l⁻¹, COD \approx 20000 mg·l⁻¹, BOD₅/COD = 0.44 \sim 0.51) yielded by a typical fine chemical factory. The factory mainly produces aliphatic esters from aliphatic acids and excess alcohols, using concentrated sulfuric acid as catalyst and dehydrator in the condensation reaction (Supplemental Material, Fig. S1, a).

~	
2	
3	
4	
4	
5	
č	
6	
7	
8	
a	
10	
11	
12	
13	
15	
14	
15	
15	
16	
17	
17	
18	
10	
13	
20	
21	
<u> </u>	
22	
22	
23	
24	
25	
25	
26	
07	
21	
28	
29	
30	
00	
31	
32	
02	
33	
34	
0-	
35	
36	
50	
37	
30	
50	
39	
10	
40	
41	
12	
42	
43	
11	
44	
45	
10	
40	
47	
10	
4ð	
49	
FO	
5U	
51	
E 0	
52	
53	
54	
55	
50	
56	
57	
57	
58	
00	
50	
59	

46	The result is extremely high level of sulfuric acid in the sewage. In addition, the ef-
47	fluent contains alcohols, aliphatic acids, esters, sulfuric acid, sodium chloride and
48	other undetermined pollutions. After neutralization by NaOH, the sulfuric acid turns
49	into crystallized Na ₂ SO ₄ (Supplemental Material, Fig. S1, b). Approximately 40 tons
50	of this sewage is yielded per day. According to wastewater regulations in China [5],
51	wastewater of COD > 500 mg·l ⁻¹ is not allowed to be discharged into the local sewage
52	treatment center. Therefore, pre-treatment is necessary. Prior to this study, a conven-
53	tional treatment system (Supplemental Material, Fig. S1, c) had been built, but it
54	failed to meet the law restriction of COD $< 500 \text{ mg} \cdot 1^{-1}$, consequence of the strong in-
55	hibitory effect of high level osmotic pressure on regular sludge [6].
56	
57	2. Materials and methods
58	
59	2.1. Effluent
60	The effluent samples were collected from Haiyan Fine Chemical Factory (Jiaxing,
61	Zhejiang, China, 30°36'04" N, 121°02'21" E). To investigate the impact of Na2SO4
62	concentration, neutralized sewage incubated at 4, 10, 20, 30 °C were filtered after
63	crystallization to make different final concentrations of Na ₂ SO ₄ .
64	
65	2.2. Strains
66	To obtain effective halo-tolerant microbial community to treat the sulfate-rich
67	wastewater, a massive screening of strains was conducted. Over the past decade, hun-
68	dreds of halo-tolerant prokaryotic species have been isolated from different salty
69	samples (e.g. sea water, mirabilite mine, salt lake) in our laboratory, and preserved
70	permanently in freeze-dried ampules in our own collection (availability:

71	http://www.zjubiolab.zju.edu.cn/wumin). All strains had been classified by 16S rRNA
72	gene sequence as previously described [7, 8]. 0.1% KH ₂ PO ₄ was used as selective
73	medium to screen strains for adaptability and A_{600} of the cultured medium was meas-
74	ured (spectrophotometer, DR3900, HACH) to determine the activities of strains. Fil-
75	tered (0.22 μ m, at 20 °C) sewage was supplemented with 0.1% (w/v) urea.
76	
77	2.3. Bioreactor
78	For laboratory simulation, plexiglass simulators (Supplemental Material, Fig. S2,
79	a) were used to simulate actual treatment system at Haiyan Fine Chemical Factory.
80	The selected strains were mixed and acclimatized in it to form sludge. The power of
81	aerator was fixed to make DO range from 3 to 4 mg l^{-1} . The sewage continuously
82	flowed in and out of the reactor at a fixed rate of 2 liters per day. Hydraulic retention
83	time (HRT) was 48 hours. COD loading rate of aerated reactors was from 3.0 to 4.3
84	$g \cdot l^{-1} \cdot day^{-1}$ and MLSS was about 1.0 $g \cdot l^{-1}$. Pure cultured sewages of selected strains
85	were mixed equally in simulator for acclimation. Influent sewage was stored at 20 °C
86	and simulator worked in thermostat room at 24°C. The solubility of Na ₂ SO ₄ varies
87	with temperature, and variable osmotic pressure could damage sludge in some cases
88	[6]. Based on the simulator mentioned above, the impact of Na_2SO_4 concentration on
89	sludge viability was investigated. To obtain sewages of different Na ₂ SO ₄ concentra-
90	tions, original sewages were neutralized and kept at 4, 10, 20, 30 °C overnight and the
91	upper clear liquors were independently decanted to simulators for treatment at 37 $^{\circ}$ C
92	with other parameters same of the above.
93	For actual application in factory setting, the existing facilities in Haiyan Fine
94	Chemical Factory were adapted to the new system developed in this study (Supple-
95	mental Material, Fig. S2, b). Instead of plexiglass, the tanks were concrete, sulfate

96	corrosion proof structures. The sludge was bred in oxidation tank until sufficient
97	sludge was acquired. The sewage was de-greased first, and then neutralized by NaOH.
98	After the removal of sediments, the upper sewage flowed continuously into oxidation
99	tank containing the sludge. HRT = 48 h, DO = $3.0 - 4.0 \text{ mg} \cdot 1^{-1}$, COD loading rate was
100	from 3.2 to 4.0 kg \cdot m ⁻³ · day ⁻¹ and MLSS was from 0.9 to 1.3 g · l ⁻¹ .). The treated efflu-
101	ent was discharged after precipitating the sludge. 21.9 mg urea and 1.4 mg KH_2PO_4
102	per 1000 mg COD were added to sewage as supplements for both laboratory simula-
103	tion and actual implementation.
104	
105	2.4. Analysis
106	
107	2.4.1. Interaction
108	Some bacteria secrete antibiotics and acids to inhibit other species, which may be
109	destructive for maintaining a stable and effective bacterial community [9]. To under-
110	stand if any strains studied in this research could potentially inhibit the others, cells of
111	all well-grown strains (Sewage $A_{600} > 0.5$ after cultivation for a week) were collected
112	and pairs ofstrains were mixed equally and cultured in sewage for a week at 25 °C in
113	flasks. Every possible pairing combination was investigated. The cultured sewages
114	were filtered (0.22 μ m) to determine residual COD every day during cultivation. The
115	lowest detected COD value of each flask was recorded in Table 1.
116	
117	2.4.2. Morphology
118	The sludge morphology reflects the microbial diversity and influences the activity
119	of sludge [10]. Sludge was observed directly by optical microscopy (BX40F4, Olym-
120	pus). After critical point drying treatment [11], the microbes in sludge was observed

Wiley-VCH

12:	by scanning electron microscopy (SEM) (S-3000N, Hitachi).
122	2
123	3 2.4.3. Microbial diversity
124	To investigate the microbial diversity, the total DNA in the sludge was extracted
12	by Fast DNA Spin Kit for Soil (MP biomedicals). After extraction, archeal 16S rRNA
120	genes were amplified by forward primer W17 (5'-ATTCYGGTTGATCCYGSCRG-3')
12	and reverse primer W02 (5'-GNTACCTTGTTACGACTT-3') [12]. Eukaryotic 18S
128	rRNA genes were amplified by forward primer W99 (5'-CGGTAATTCCAGCTCC-3')
129	[13] and W02. PCR reactions were performed as described (Lefebvre et al. [14]).
130	Bacterial diversity based on 16S rRNA gene were sequenced and analyzed by Illumi-
13:	na MiSeq Platform as previously described [15].
132	2
133	3 2.4.4. Other analyses
134	4 COD, BOD ₅ , MLSS, N-NH ₃ and P-PO ₄ ³⁻ were analyzed according to Standard
13	5 Methods [16]. DO, pH and temperature were determined by multi-parameter handheld
130	meter (Multi 350i; WTW). The amount of SO_4^{2-} was determined by BaCl ₂ [17].
13	
138	3 3. Results and discussion
139	
140	3.1. Effluent quality
14:	Several batches of sewage were collected for laboratory use Their COD varied
142	from 18600 to 25500 mg·l ⁻¹ ; N-NH ₃ ⁺ from 2.1 to 4.3 mg·l ⁻¹ ; P-PO ₄ ³⁻ from 0 to 0.2
143	$mg \cdot l^{-1}$; $pH < 1$; appeared light yellow and exuded acrid smell. After neutralization and
144	filtration, the samples displayed COD ranging from 6100 to 8500 mg·l ⁻¹ ; N-NH ₃ ⁺
14	from 1.2 to 3.8 mg·l ⁻¹ ; P-PO ₄ ³⁻ from 0 to 0.2 mg·l ⁻¹ ; pH = 7.2 and appeared colorless.

Wiley-VCH

146	
147	3.2. Selected strains
148	37 of 475 strains survived (A ₆₀₀ > 0.1) in sewage and 15 of them grew to A ₆₀₀ >
149	0.5. The compatibility tests among the 15 strains were conducted by mixed cultivation
150	as Table 1. The result showed that Hyphomicrobium sp. CB03, Dietzia sp. XM15,
151	Staphylococcus sp. T211, Flavobacterium sp. AXY1, Ochrobactrum sp. BY4, Bacil-
152	lus sp. BYXT, Sphingobacterium sp.YY1, Rhodococcus sp. NH7-4, Stappia sp. HM4,
153	Microbacterium sp. PY3-1 and Pseudomonas sp. MN3-2 are compatible, while
154	Pseudomonas sp. GE2, Halobacterium sp. AE4-1, Natrinema sp. XJ5 and Actino-
155	polyspora sp. DH9-1 should be eliminated from the mixture. Some species of Na-
156	trinema and Actinopolyspora were reported to produce antibiotics which might be the
157	reason of inhibition to other strains [18, 19]; however, further research is needed to
158	confirm this speculation. The chosen strains belonged to Actinobacteria, Proteobacte-
159	ria, Firmicutes and Bacteroidetes families according to systematic analysis by MEGA
160	5.0 software [20] (Fig. 1). As the Na_2SO_4 concentration of the sewage was over 15%,
161	all of the chosen strains exceeded expectation in halo-tolerance given that they were
162	originally isolated from sea water, ocean sediment and saline wastewaters with TDS
163	(mainly NaCl) less than 4%, which suggested that CHBC might be less sensitive to
164	Na_2SO_4 concentration.
165	

166 3.3. Bioreactor performance

167 Effluent COD in the simulator bioreactor was maintained at $< 500 \text{ mg} \cdot 1^{-1}$ and its 168 removal rate > 90% after running for 23 days. Although the influent quality varied, 169 the COD removal rate was maintained at > 90% (Fig. 2). Residual N-NH₃⁺ and

 $P-PO_4^{3+}$ was maintained below 5 mg·l⁻¹ and 0.5 mg·l⁻¹ respectively all through the test.

171	Influent pH started out at 6.8, but was raised to 7.6-8.2 in 24 hours. The success of
172	simulator indicated that, with CHBC, organic pollution removal at Na ₂ SO ₄ saturated
173	concentration was feasible.
174	
175	3.4. Impact of Na ₂ SO ₄ concentration
176	The Na ₂ SO ₄ concentrations of sewages at 4, 10, 20, 30 °C were stable at 64.2±1.8
177	$g \cdot l^{-1}$, 89.9±3.3 $g \cdot l^{-1}$, 186.5±7.2 $g \cdot l^{-1}$ and 383.0±6.5 $g \cdot l^{-1}$ respectively. Then the simula-
178	tion was conducted at 37 °C to study the evolution of COD removal rate (Fig. 3) of
179	sewages with four different Na ₂ SO ₄ concentrations mentioned above. COD removal
180	was enhanced by reduced Na_2SO_4 , albeit the effluent COD in highest Na_2SO_4 level
181	still maintained the $< 500 \text{ mg} \cdot l^{-1}$ threshold. The result indicated that the increasing
182	Na ₂ SO ₄ reduced COD removal rate of CHBC significantly (<i>t</i> -test, α =0.05), which was
183	similar to the effect of NaCl seen in previous studies [6]. Despite reduced efficiency,
184	the treatment system with CHBC achieved $COD < 500 \text{ mg} \cdot 1^{-1}$ threshold even under
185	the extreme constraint of highest Na ₂ SO ₄ level.
186	Traditionally, sulfate is first removed from the wastewater before being treated in
187	an anaerobic anoxic treatment system. Sulfate removal reduces osmolarity and avoids
188	production of sulfide, thus making the wastewater amendable to common anaerobic
189	biotreatment methods. However, sulfate removal often produces hazardous solid
190	wastes, which causes secondary pollution and incur extra treatment costs. Here, our
191	system circumvents the step of sulfate removal and directly applies the activated
192	sludge comprised of selected halo-tolerant bacterial strains to Na ₂ SO ₄ saturated
193	wastewaters. Our assumption is that Na ₂ SO ₄ in itself does not constitute additional
194	environmental threats beyond the fact that it increases the osmolarity of the
195	wastewater . Although we do not have direct evidence of this assumption, our result

2
3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
20
20
27
28
29
30
31
32
22
33
34
35
36
37
38
30
40
4U
41
42
43
44
45
46
<u>4</u> 7
יד- ۸٥
40
49
50
51
52
53
54
55
50
30
57
58
59
60

indicated that increased osmolarity was the main effect of sulfate. Based on the hypothesis, we developed a halo-tolerant bacterial community, used only aerobic reactors to avoid production of sulfide in anaerobic process, and achieved COD removal without removing the sulfate. Thus, our system represents a novel method for treating sulfate rich wastewater. This method is suitable for pretreatment of wastewater containing sulfate.

- 202
- 203 3.5. Application performance

CHBC was applied in the Haiyan Fine Chemical Factory. The residual COD of 204 205 discharged effluent had been monitored for more than five years (Fig. 4, a). The result showed that the new system meets the law restriction of $COD < 500 \text{ mg} \cdot 1^{-1}$. During 206 the processing, an accident caused a set of aerators to shutdown in December 2009, 207 which reduced the DO in oxidation tank to $0.2 \text{ mg} \cdot 1^{-1}$. Anaerobes produced copious 208 209 amount of sulfides that made the sewage black and putrid. The effluent COD rose higher than 500 mg·l⁻¹ until the aerators were repaired. It took several months to reju-210 venate the activity of sludge; and while low temperature during the winter decreased 211 212 the activity of bacteria, but also reduced Na₂SO₄ concentration. The net effect of the 213 low temperature and low Na₂SO₄ concentration was that residual COD became slightly higher in winter but still remained below 500 mg·l⁻¹. Compared with the ef-214 215 fect of regular sludge (acquired from local wastewater treatment center) used in pre-216 vious systems, CHBC maintained higher and more stable COD removal rate (Fig. 4, b) 217 in actual application. 218

219 3.6. Microbial community

After acclimation in the laboratory setting, the sludge was transplanted to the ac-

tual oxidation tank in the factory wastewater processing center. Under an open system, the sludge was exposed to external microbes and consequently, the composition of original strains mixture was altered. Nevertheless, the high osmotic pressure created by the hypersaline environment prevented the establishment of most exogenous mi-crobes: neither archaeal 16S rRNA gene nor eukaryotic 18S rRNA gene was detected by PCR amplification, and no protist was observed by microscope. The MiSeq analysis of bacterial community revealed that exogenous uncultured phylum TM7 occupied approximately 15% in relative abundance. Meanwhile, Proteobacteira, Ac-tinobacetira and Bacteroidetes families comprised approximately 75% relative abun-dance as the dominant phyla in the sludge (Supplemental Material, Fig. S3). Short partial 16S rRNA gene (about 300 bps) sequences read by MiSeq Platform were con-sistent with GenBank KF956044 – 956054, indicating that the original 11 strains set-tled in the sludge and formed dominant species except Staphylococcus sp. T211 and Bacillus sp. BYXT. Furthermore, confirming the result of PCR, the SEM graphic showed abundance of bacteria (Supplemental Material, Fig. S4) and absence of eukaryotic cells. While similar bacterial distribution in saline sludge was discovered in previous research [14], the CHBC revealed a very simple distribution of cultivable strains which made it easier to analyze, control and rebuild.

4. Conclusion

High salinity in sewage inhibits bioactivity by raising the osmotic pressure to lethal levels for cells [21, 22], making biotreatment of sulfate-rich wastewater a distinct challenge. This study circumvents this challenge with the use of CHBC, and demonstrates that CHBC can be effectively applied to treat sulfate-rich wastewater with variable Na₂SO₄ concentration (6.4% - 38.3%) at wide temperature range (4°C - 37°C).

Proteobacteira, Actinobacetira and Bacteroidetes were the main classes in this case.

Application of CHBC revealed consistently high COD removal rate of > 90% for

- years. This method proved suitable for removing bio-degradable organic pollutants
- with high salinity.

st Je for ren.

5. Acknowledgement

This study was supported by National Natural Science Foundation of China, Na-

tional Science and Technology Major Project, Provincial Science and Technology

- Major Project, Public Technology Research and Social Development Project of
- Zhejiang Province (2011c23077). Thanks to the cooperation of Haiyan Fine Chemical
- Industry Co., Ltd, the method was applied in real projects. The authors thank Dr.
- Yu-Hua Zhao and Zhong-Yun Chen for their advices.

6. Conflict of interest

260 The authors have declared no conflict of interest.

262	References
263	[1] L. W. Hulshoff Pol, P. N. L. Lens, A. J. M. Stams, G. Lettinga, Anaerobic treat-
264	ment of sulphate-rich wastewaters. Biodegradation. 1998, 9, 213-224.
265	[2] A. Oren, Microbial life at high salt concentrations: phylogenetic and metabolic
266	diversity. Saline Syst. 2008, 4:2.
267	[3] R. H. Vreeland, Mechanisms of Halotolerance in Microorganisms. Crit Rev Mi-
268	crobiol. 1987, 14, 311-356.
269	[4] C. Hinteregger, F. Streichsbier, Halomonas sp., a moderately halophilic strain, for
270	biotreatment of saline phenolic waste-water. Biotechnol Lett. 1997, 19, 1099-1102.
271	[5] MEPC, Integrated wastewater discharge standard, GB 8978-1996. Ministry of
272	Environmental Protection of China, Beijing, 1996.
273	[6] D. F. Kincannon, A. F. Gaudy Jr., Some effects of high salt concentrations on acti-
274	vated sludge. J. Water Pollut. Control Fed. 1966, 38, 1148–1159.
275	[7] X. W. Xu, S. J. Liu, D. Tohty, A. Oren, M. Wu, P. J. Zhou, <i>Haloterrigena sac-</i>
276	charevitans sp. nov., an extremely halophilic archaeon from Xin-Jiang, China. Int J
277	Syst Evol Microbiol. 2005, 55, 2539–2542.
278	[8] X. W. Xu, Y. H. Wu, Z. Zhou, C. S. Wang, Y. G. Zhou, H. B. Zhang, Y. Wang, et
279	al., Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov.and Halomonas
280	subterranean sp. nov., halophilic bacteria isolated from hypersaline environments of
281	China. Int J Syst Evol Microbiol. 2007, 57, 1619–1624.
282	[9] P. Ilke, R. Ateequr, U. Emine, J. Daniel, O. Derin, Pyrosequencing reveals the in-
283	hibitory impact of chronic exposure to erythromycin on activated sludge bacterial
284	community structure. Biochem Eng J.2014,90,195-205.
285	[10] J. C. Williams, F. L. de los Reyes, Microbial community structure of activated
286	sludge during aerobic granulation in an annular gap bioreactor. Water Sci Technol.

287	2006 , <i>54</i> , <i>139-146</i> .
288	[11] J. H. Carr, R. L. Anderson, M. S. Favero, Comparison of chemical dehydration
289	and critical point drying for the stabilization and visualization of aging biofilm present
290	on interior surfaces of PVC distribution pipe. J Appl Bacteriol. 2008, 80, 225-232.
291	[12] J. J. Godon, E. Zumstein, P. Dabert, F. Habouzit, R. Moletta, Molecular microbial
292	diversity of an anaerobic digestor as determined by small-subunit rDNA sequence
293	analysis. Appl Environ Microbiol. 1997, 63:2802–22813.
294	[13] V. P. Edgcomb, D. T. Kysela, A. Teske, A. de Vera Gomez, M. L. Sogin, Benthic
295	eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl
296	Acad Sci USA. 2002, 99:7658–7662.
297	[14]O. Lefebvre, N. Vasudevan, K. Thanasekaran, R. Moletta, J. J. Godon, Microbial
298	diversity in hypersaline wastewater: the example of tanneries. Extremophiles. 2006,
299	10,505-13.
300	[15] J. G. Caporaso, C. L. Lauber, W. A. Walters, D. Berg-Lyons, J. Huntley, N. Fierer,
301	S. M. Owens, et al., Ultra-high-throughput microbial community analysis on the Illu-
302	mina HiSeq and MiSeq platforms. ISME J. 2012, 6, 1621-1624.
303	[16] APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed.
304	American Public Health Association, Washington, D.C., 1998.
305	[17] MEPC, Water quality, determination of sulfate, gravimetric method, GB
306	11899-89. Ministry of Environmental Protection of China, Beijing, 1989.
307	[18] P. Karthikeyan, S. G. Bhat, M. Chandrasekaran, Halocin SH10 production by an
308	extreme haloarchaeon Natrinema sp. BTSH10 isolated from salt pans of South India.
309	Saudi J Biol Sci. 2013, 20,205-212.
310	[19] C. R. Kokare, K.R. Mahadik, S.S. Kadam, B.A. Chopade, Isolation, characteriza-
311	tion and antimicrobial activity of marine halophilic Actinopolyspora species AH1

3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
20 07	
21	
28	
29	
30	
31	
32	
22	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
11	
-+4 15	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
55	
56	
57	
58	
59	
60	

312	from the west coast of India	. Curr Sci.2004, 86:593–597.
-----	------------------------------	------------------------------

- 313 [20] K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, MEGA5:
- molecular evolutionary genetics analysis using maximum likelihood, evolutionary 314
- distance, and maximum parsimony methods. Mol Biol Evol. 2011, 28, 2731-2739. 315
- [21] A. Ventosa, M. C. Marquez, M. J. Garabito, D. R. Arahal, Moderately halophilic 316
- 317 gram-positive bacterial diversity in hypersaline environment. Extremophiles. 1998, 2,
- 318 *297-304*.
- [22] A. Ventosa, J. J. Nieto, A. Oren, The biology of aerobic moderately halophilic 319 n, v. 1998, o.
- 320 bacteria. Microbiol Mol Biol Rev. 1998, 62, 504-544.

321	Legends to Figures:
322	Fig. 1. Neighbor-joining tree based on the 16S rRNA gene sequences of selected
323	strains. Bootstrap percentages are based on 1000 replicated datasets; bar, 0.05 substi-
324	tutions per nucleotide position.
325	
326	Fig. 2. Evolution of COD and its removal rate in simulators during acclimatization.
327	
328	Fig. 3. Evolution of COD in simulators at different Na_2SO_4 concentrations. The data
329	were collected after simulators were kept running for 5 days. Height of blue back-
330	ground indicated the influent sewage COD of three batches used in this test.
331	
332	Fig. 4. Application effect of regular sludge and CHBC. a, the evolution of effluent
333	COD after treatment; current system replaced the old one in Jun 2009; red short lines
334	represent the summer days, blue lines for winter; the curve was drawn according to
335	the average COD values per 30 days. Increasing red indicates higher COD value. b,
336	comparison of the COD data of the old system used regular sludge and current system
337	used CHBC; data for statistical analysis was collected from Aug 23, 2008 to Apr 25,
338	2009 and from Mar 10, 2010 to Mar 29, 2013 for previous and current system respec-
339	tively; inf., influent; eff., effluent; st.dev., standard deviation.
340	

 Legends to Table

Table 1. The interaction of the strains.
 Increasing red indicates higher residual COD.
 COD_n (n=1-15) was calculated as average of the 14 residual COD values of cultured sewage mixed with strain n and the other 14 strains in pairs. The COD_{1, 6, 10, 11} were significantly higher than the average level of COD_n (Welch's test, $\alpha=0.05$), which in-dicated that *Pseudomonas sp.* GE2, *Halobacterium sp.* AE4-1, *Natrinemapallidum sp.* XJ5 and Actinopolyspora sp. DH9-1 reduced the COD removal effect when mixed with other strains

Strain	No.															
Halobacterium sp. AE4-1	1	628												Residu	ual COD (mg·l⁻¹)
Hyphomicrobium sp. CB03	2	774	500												1400	
Dietzia sp. XM15	3	1160	366	580											1200	
Staphylococcus sp. T211	4	1010	216	337	438										1000	
Flavobacterium sp. AXY1	5	1260	205	600	186	622									800	
Natrinema sp. XJ5	6	1320	1150	1220	1100	1290	580								600	
Ochrobactrum sp. BY4	7	764	438	235	568	528	1250	825							400	
Bacillus sp. BYXT	8	970	502	224	198	415	730	590	758						200	
Sphingobacterium sp.YY1	9	1080	254	535	530	466	1040	548	590	410					0	
Actinopolyspora sp.DH9-1	10	732	1240	815	955	880	1290	706	784	1090	778					
Pseudomonas sp. GE2	11	880	738	1160	830	970	850	1080	1340	1020	800	574				
Rhodococcus sp. NH7-4	12	1330	419	554	200	276	920	347	518	568	778	704	624			
Stappia sp. HM4	13	1310	310	225	216	229	950	371	475	544	822	1020	590	502		
Microbacterium sp. PY3-1	14	1190	395	526	494	194	1090	279	475	344	868	1230	472	292	311	
Pseudomonas sp. MN3-2	15	1300	406	344	432	406	1170	455	256	222	1310	980	460	454	556	504
COD,		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		1077	530	593	519	565	1098	583	576	631	934	972	581	558	600	625
349																

Fig. 1. Neighbor-joining tree based on the 16S rRNA gene sequences of selected strains. Bootstrap percentages are based on 1000 replicated datasets; bar, 0.05 substi-tutions per nucleotide position. 190x142mm (300 x 300 DPI)

Fig. 2. Evolution of COD and its removal rate in simulators during acclimatization. $164 \times 101 \text{ mm}$ (300 x 300 DPI)

Fig. 3. Evolution of COD in simulators at different Na2SO4 concentrations. The data were collected after simulators were kept running for 5 days. Height of blue back-ground indicated the influent sewage COD of three batches used in this test. 151x79mm (300 x 300 DPI)

Wiley-VCH

Fig. 4. Application effect of regular sludge and CHBC. a, the evolution of effluent COD after treatment; current system replaced the old one in Jun 2009; red short lines represent the summer days, blue lines for winter; the curve was drawn according to the average COD values per 30 days. Increasing red indicates higher COD value. b, comparison of the COD data of the old system used regular sludge and current system used CHBC; data for statistical analysis was collected from Aug 23, 2008 to Apr 25, 2009 and from Mar 10, 2010 to Mar 29, 2013 for previous and current system respec-tively; inf., influent; eff., effluent; st.dev., standard deviation.

183x120mm (300 x 300 DPI)

Supplementary

- Fig. S1. The chemical reaction yielding Na₂SO₄; diagram of the treatment system used prior to this study. a, the main chemical reaction of Na₂SO₄ production; b, the Na₂SO₄·10H₂O crystal formed in the sewage after neutralization; c, the treatment system operated before the study. R and R', hydrocarbon chain; UASB, Up-flow anaerobic sludge bed.
- **Fig. S2.** Simulator and treatment system applied in this study. a, the simulator with cells of 5 liters; b, the treatment system converted from the simulator to treat large scale industrial wastewater.
- Fig. S3. Relative abundance of phyla detected in sludge by MiSeq.
- Fig. S4. SEM graphic of sludge formed by CHBC.

