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A taxonomic study was carried out on strain YN3T, which was isolated from a seaweed sample

taken from the coast of Weihai, China. The bacterium was Gram-stain-negative, rod-shaped, and

could grow at pH 5.0–10.0 and 4–32 6C in the presence of 0–9.0 % (w/v) NaCl. Strain YN3T

was positive for the hydrolysis of polysaccharides, such as agar, starch and xylan. The

predominant respiratory quinone was ubiquinone-8. The major fatty acids were C16 : 1v7c and/or

iso-C15 : 0 2-OH, C16 : 0 and C18 : 1v7c. The main polar lipids were diphosphatidylglycerol,

phosphatidylglycerol and phosphatidylethanolamine, and two unidentified glycolipids. The

genomic DNA G+C content was 49.4 mol%. Phylogenetic analysis based on 16S rRNA gene

sequences indicated that strain YN3T should be assigned to the genus Gilvimarinus.

‘Gilvimarinus agarilyticus’ KCTC 23325 and Gilvimarinus chinensis QM42T had the closest

phylogenetic relationship to strain YN3T, and showed 97.9 % and 95.8 % sequence similarities,

respectively. On the basis of phenotypic, chemotaxonomic and genotypic data and DNA–DNA

hybridization studies, we propose that strain YN3T represents a novel species of the genus

Gilvimarinus, for which the name Gilvimarinus polysaccharolyticus sp. nov. is proposed. The type

strain is YN3T (5KCTC 32438T5JCM 19198T). An emended description of the genus

Gilvimarinus is also presented.

In 2009, the novel genus Gilvimarinus in the order
Alteromonadales was proposed by Du et al. (2009) with
Gilvimarinus chinensis as the type species, which was the
only species with a validly published name in the genus
Gilvimarinus until recently. G. chinensis QM42T could form
hollow zones on an agar plate (Du et al., 2009), and had
agarase-encoding genes within its genome (NCBI accession
nos WP_02028688, WP_020208740, WP_020208752, WP_

020208794 and ARIX01000000 in BioProject PRJNA202777).
Two years later, a novel member of the genus, ‘Gilvimarinus
agarilyticus’, was isolated from the seashore of Jeju Island. ‘G.

agarilyticus’ could also degrade agar (Kim et al., 2011). Many
agarolytic bacteria have been isolated from marine environ-
ments, including seawater, marine sediments, seaweeds and
some marine animal samples, such as sponges. These bacteria
belong to many genera, including Alterococcus (Shieh & Jean,
1998), Alteromonas (Kirimura et al., 1999; Leon et al., 1992),
Agarivorans (Du et al., 2011; Long et al., 2010), Marini-
microbium (Lim et al., 2006), Microbulbifer (González et al.,
1997; Jeong et al., 2013; Miyazaki et al., 2008; Wang et al.,
2009; Zhang et al., 2012), Persicitalea (Yoon et al., 2007),
Pseudoalteromonas (Schroeder et al., 2003), Rubritalea
(Scheuermayer et al., 2006), Simiduia (Kim et al., 2012a;
Shieh et al., 2008), Saccharophagus (Kim et al., 2010),
Thalassomonas (Jean et al., 2006; Park et al., 2011) and Vibrio
(Aoki et al., 1990; Macián et al., 2001). Here, we describe a
novel seaweed-associated agarolytic bacterium, strain YN3T,

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene
sequence of strain YN3T is HM437226.

Two supplementary figures are available with the online Supplementary
Material.
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isolated from the coast of Weihai in Shandong province,
China.

Strain YN3T was originally recovered from a seaweed
sample collected from the coast of Weihai, China. The
samples were stored in darkness at 4 uC until micro-
organisms were isolated. Dilutions of fragmented seaweed
samples were spread on marine agar 2216 (MA; BD). After
incubation at 25 uC for 7 days, one of the colonies was
observed to form a clear hollow zone, which surrounded it
on the plate. The colony was isolated and named strain
YN3T as a pure culture after three successive transfers to
fresh agar plates and was stored at 280 uC in 20 % (v/v)
glycerol.

Since strain YN3T propagated very well on MA but barely
grew in marine broth 2216 (BD), tests of optimum growth
conditions were taken on MA plates. The morphology of
the colonies was observed on MA plates after 3–4 days of
incubation at 28 uC. The morphology of the cells was
examined by optical microscopy (BX40; Olympus) and
transmission electron microscopy (JEM-1230; JEOL). The
optimal NaCl concentration for growth was tested using
NaCl-free MA plates with different NaCl concentrations (0,
1, 3, 5, 7, 9 and 10 %, w/v). The temperature range for
growth was determined by incubation at 4, 10, 15, 28, 32,
37, 42 and 50 uC on MA. The pH range for growth was
determined on MA, which was adjusted to pH 5.0–10.0 (in
0.5 pH unit intervals) using appropriate biological buffers
(MES for pH 5.0–6.5, PIPES for pH 6.5–7.0, Tricine for
pH 7.0–9.0 and CAPSO for pH 9.0–10.0) at a concentra-
tion of 50 mM.

Cell motility of strain YN3T was assessed using a semi-solid
stab-culture method according to MacFaddin (1976), with
incubation at 28 uC for two weeks. The existence of the
flagellum was confirmed by transmission electron micro-
scopy. A few cells were washed and suspended in sterilized
water, and the suspension was dropped onto a carbon-
coated copper grid. The grid was stained with 2 % (w/v)
uranyl acetate and examined using a JEOL JEM-1230
transmission electron microscope at an accelerating voltage
of 80 kV. Gram-stain reactions were tested according to
Bergey’s Manual (Holt et al., 1994). Biomass for physio-
logical and chemotaxonomic studies was obtained by
cultivating the strains in modified marine broth with 0.1 %
(w/v) D-galactose and 0.5 % (w/v) sucrose added for 3 days
under optimum growth conditions. The catalase and
oxidase activities and hydrolysis of DNA, gelatin, starch
and Tweens 20, 40, 60 and 80 were determined according
to Dong & Cai (2001). Hydrolysis of casein, chitosan,
p-nitrophenyl butyrate (C4), L-tyrosine and xylan was
determined on MA containing 2 % (w/v) casein, 0.6 %
(w/v) chitosan, 0.3 % (v/v) p-nitrophenyl butyrate, 0.5 %
(w/v) L-tyrosine and 0.6 % (w/v) xylan. Additional enzyme
activities and biochemical characteristics were tested using
API ZYM, API 20 NE and API 50 CH test strips
(bioMérieux) according to the manufacturer’s instructions,
except that cells were suspended in 2 % (w/v) sea salts

(Sigma) for API 20 NE strips and in marine oxidation–
fermentation medium (Leifson, 1963) for API 50 CH.
Further tests of oxidation of various carbon sources
were carried out using a Gram-negative GN2 MicroPlate
(Biolog), according to the manufacturer’s instructions,
except that cells were suspended in 2 % (w/v) sea salts
(Sigma). Susceptibility to antibiotics was determined on
MA using discs containing the following antibiotics (mg per
disc unless stated otherwise): amikacin (30), amoxicillin
(10), ampicillin (10), carbenicillin (100), chloramphenicol
(30), ciprofloxacin hydrochloride (5), erythromycin (15),
gentamicin (10), kanamycin (30), lincomycin (15), nalidixic
acid (30), neomycin (30), norfloxacin (30), novobiocin (10),
O/129 (10), penicillin G (10 IU), polymyxin B (300 U),
streptomycin (10), sulfafurazole (300), sulfamethoxazole
(1.25), tetracycline (30), trimethoprim (5) and vancomycin
(30). The inhibition of cell growth by the antibiotics was
observed after 7 days of incubation at 28 uC.

Genomic DNA was extracted according to the method
described by Marmur & Doty (1961). The genomic DNA
obtained was sequenced using next-generation sequencing
technology (Hiseq2000; Illumina) with paired-end libraries
of 500 bp and 6000 bp insert size. The DNA G+C content
was calculated from the result of the whole genome
sequence, and also determined by reversed-phase HPLC
and calculated from the deoxyguanosine/thymidine ratio
(Mesbah et al., 1989). DNA–DNA hybridization experi-
ments were performed using the thermal denaturation and
renaturation method of De Ley et al. (1970) on a Beckman
DU800 spectrophotometer. The hybridization temperature
used was 71 uC and the experiments were carried out in
triplicate. Total polar lipids were extracted and separated
by two-dimensional TLC on silica gel plates (10610 cm,
no. 5554; Merck) according to the methods of Xu et al.
(2007). Aminolipids were observed by spraying the plate
with 0.5 % ninhydrin in ethanol before heating it at 55 uC
for 10 min. Phospholipids were observed after staining
with molybdenum blue spray reagent (Sigma). Glycolipids
were observed using the methods of Xin et al. (2000). The
total lipids were detected by spraying 5 % (w/v) phospho-
molybdic acid in ethanol and heating at 140 uC for 10 min
with ammonia. All the polar lipid images were further
analysed as described by Minnikin et al. (1984). Cellular
fatty acid methyl esters were obtained from freeze-dried
cells, and analysed according to the instructions of
the Sherlock Microbial Identification System (MIDI).
Isoprenoid quinones were extracted from freeze-dried cells
with chloroform/methanol (2 : 1, v/v) and identified by LC-
MS (Tindall, 1990; Chung et al., 1997).

Amplification of the almost-complete 16S rRNA gene was
conducted via PCR using the universal primers 27F
(59-GAGAGTTTGATCCTGGCTCAG-39) and 1492R (59-
TACGGYTACCTTGTTACGACTT-39) (Winker & Woese,
1991). PCR products were cloned into vector pMD 19-T
(TaKaRa) and sequenced by an automated DNA sequencer
ABI 3730 (Applied Biosystems) with the ABI BigDye 3.1
sequencing kit (Applied Biosystems). The 16S rRNA
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sequence was compared with recognized organisms using

the EzTaxon-e service (Kim et al., 2012b). The sequence

dataset was aligned on the SINA Online service (Pruesse et al.,

2012), based on SILVA SSU/LSU databases. Phylogenetic trees

were reconstructed using the neighbour-joining (Saitou &

Nei, 1987), maximum-likelihood (Felsenstein, 1981) and

maximum-parsimony (Fitch, 1971) methods with the MEGA

6 program (Tamura et al., 2013). According to the best

nucleotide substitution models found by the maximum-

likelihood method in MEGA 6, the algorithm of the Jukes–

Cantor model (Jukes & Cantor, 1969) was used to calculate

the evolutionary distances, using the neighbour-joining and

maximum-likelihood methods. The resultant tree topologies

were evaluated by bootstrap analysis (Felsenstein, 1985) on

the basis of 1000 replicates.

The 16S rRNA gene sequence (1503 nt) of strain YN3T was
obtained. Strain YN3T showed the highest levels of 16S

rRNA gene sequence similarities with ‘G. agarilyticus’
KCTC 23325 (97.9 %) and G. chinensis QM42T (95.8 %).
The similarities shown by strain YN3T with the type strains
of other species were all lower than 95 %. Among those
strains, the sequence similarities greater than 91 % between
strain YN3T and closely related genera were: Marini-
microbium (94.7–93.6 %), Cellvibrio (93.8–92.0 %), Eionea
(93.7 %), Teredinibacter (93.6 %), Saccharophagus (93.4 %),
‘Candidatus Endobugula’ (93.1–91.7 %), Porticoccus (92.9–
92.8 %), Pseudoteredinibacter (92.8 %), Simiduia (92.8–
92.4 %), Microbulbifer (93.6–91.5 %), Dasania (92.1 %),
Umboniibacter (92.25 %) and Pseudomonas (91.3–91.0 %).
All the topological structures of neighbour-joining, max-
imum-likelihood and maximum-parsimony phylogenetic
trees were identical in the coherent cluster of strain
YN3T, ‘G. agarilyticus’ KCTC 23325 and G. chinensis
QM42T, indicating that strain YN3T belonged to the genus
Gilvimarinus (Fig. 1).
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Fig. 1. Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showing the phylogenetic relationships of the
novel strain YN3T and related taxa. Open circles indicate that corresponding nodes were also identical in trees reconstructed
using the maximum-likelihood method. Filled circles indicate that corresponding nodes were also recovered in the trees
reconstructed using the maximum-likelihood and maximum-parsimony methods. Numbers at branch nodes refer to bootstrap
values ¢50 % (based on 1000 replicates). Burkholderia cepacia ATCC 25416T (GenBank accession no. U96927) was used
as an out-group. Bar, 0.02 substitutions per nucleotide position.
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Cells of strain YN3T were Gram-stain-negative, aerobic
and rod-shaped (0.4–1.0 mm in width and 1.0–3.0 mm in
length). Cells showed motility with a single polar flagellum
(Fig. S1, available in the online Supplementary Material). The
other two strains, G. chinensis QM42T and ‘G. agarilyticus’
KCTC 23325, both have single polar flagellum via transmis-
sion electron micrographs. All three strains can degrade agar
on MA. The phenotypic characteristics of strain YN3T are
given in detail in the species description. Strain YN3T showed
significant differences from ‘G. agarilyticus’ KCTC 23325 and
G. chinensis QM42T in growth temperature. G. chinensis
QM42T could grow at 40 uC while strain YN3T could not.
Moreover, strain YN3T could grow at 4 uC but ‘G.
agarilyticus’ KCTC 23325 could not. Strain YN3T could
survive without NaCl on MA, while ‘G. agarilyticus’ KCTC
23325 and G. chinensis QM42T needed at least 1 %
(w/v) NaCl for growth. Moreover, strain YN3T could
be distinguished from ‘G. agarilyticus’ KCTC 23325 or G.

chinensis QM42T by some physiological characteristics,
including hydrolysis of Tweens 20, 40, 60 and 80, activity
of b-galactosidase and sensitivity to novobiocin, penicillin G
and streptomycin. In addition, the utilization of succinic acid
monomethyl ester was only observed in strain YN3T. The
detailed differential properties of strains YN3T, ‘G. agarily-
ticus’ KCTC 23325 and G. chinensis QM42T are listed in
Table 1.

The DNA G+C content of strain YN3T was 48.3 mol% (by
HPLC) and 49.4 % (by whole genome sequencing). The
DNA–DNA relatedness value of 38.1 % between strain
YN3T and reference strain ‘G. agarilyticus’ KCTC 23325
was significantly below the threshold value of 70 % (Wayne
et al., 1987). The main polar lipids of novel strain YN3T

were diphosphatidylglycerol, phosphatidylglycerol and
phosphatidylethanolamine, and two unidentified glycoli-
pids (GL1–2), among which the three kinds of phospho-
lipids were identical to those of G. chinensis QM42T and ‘G.
agarilyticus’ KCTC 23325. However, there were only two
unidentified glycolipids (GL1–2) found in strain YN3T,
while there were five (GL1–5) in G. chinensis QM42T and
three (GL1, 2 and 4) in ‘G. agarilyticus’ KCTC 23325 (Fig.
2). This is the first report of polar lipid components of
members of the genus Gilvimarinus. Further detailed polar
lipid images with different specific stains are given in Fig.
S2. The major cellular fatty acids (.10 %) of strain YN3T

were C16 : 1v7c or iso-C15 : 0 2-OH (27.7 %), C16 : 0 (18.3 %)
and C18 : 1v7c (12.3 %), which are similar to those of
‘G. agarilyticus’ KCTC 23325 and G. chinensis QM42T.
Nevertheless, the contents of straight-chain fatty acids
C15 : 0, C16 : 0 and C17 : 0 were greater in strain YN3T (7.8 %,
18.3 % and 6.3 %) than in G. chinensis QM42T (2.6 %,
14.7 % and 3.8 %) or ‘G. agarilyticus’ KCTC 23325 (1.6 %,
11.1 % and 4.4 %). However, the contents of hydroxy fatty
acids C10 : 0 3-OH, C12 : 0 2-OH and C12 : 0 3-OH in strain
YN3T (3.8 %, 2.4 % and 0.7 %) were lower than those in ‘G.
agarilyticus’ KCTC 23325 (4.9 %, 7.1 % and 3.3 %) and
G. chinensis QM42T (6.1 %, 4.5 % and 4.7 %). Summed
feature 1 (iso-C15 : 1 H and/or C13 : 0 3-OH) and summed
feature 2 (containing one or more of unknown equivalent
chain length 10.928, C12 : 0 aldehyde, iso-C14 : 0 3-OH and/
or iso-C16 : 1 I) were only detected in strain YN3T (1.0 %
and 0.8 %). Detailed fatty acid compositions of strain
YN3T, ‘G. agarilyticus’ KCTC 23325 and G. chinensis
QM42T are listed in Table 2. The predominant respiratory
quinone of strain YN3T was ubiquinone-8.

On the basis of physiological, chemotaxonomic and phylo-
genetic results from this study, strain YN3T is considered to
represent a novel species within the genus Gilvimarinus, for
which the name Gilvimarinus polysaccharolyticus sp. nov. is
proposed.

Emended description of the genus Gilvimarinus
Du et al. 2009

Cells are motile with a single polar flagellum. Cells can
survive without NaCl and hydrolyse agar. The G+C

Table 1. Differential characteristics of the novel strain YN3T

with its closest phylogenetic relatives

Strains: 1, YN3T; 2, G. chinensis QM42T; 3, ‘G. agarilyticus’ KCTC

23325. +, Positive; 2, negative. All data were obtained from this

study.

Characteristic 1 2 3

Growth at:

4 uC + + 2

40 uC 2 + 2

0 % NaCl (w/v) + 2 2

Hydrolysis of:

Tween 20 2 + +

Tween 40 2 + 2

Tween 60 2 + 2

Tween 80 2 + 2

a-Galactosidase activity (API ZYM) 2 + +

Utilization of (Biolog GN2):

a-Cyclodextrin + 2 +

N-Acetyl-D-glucosamine 2 + +

L-Arabinose 2 2 +

D-Fructose 2 2 +

a-D-Glucose 2 + +

a-Lactose 2 + +

Lactulose 2 2 +

Melibiose 2 + +

Trehalose 2 + +

Turanose 2 + 2

Monomethyl succinate + 2 2

D-Galacturonic acid 2 + 2

a-Ketovaleric acid 2 2 +

Antibiotic sensitivity

Novobiocin (30 mg) + + 2

Penicillin G (10 IU) 2 + 2

Streptomycin (10 mg) + + 2

DNA G+C content (mol%) (by HPLC) 48.3 50.7 52.5

Gilvimarinus polysaccharolyticus sp. nov.
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content of the DNA varies between 48 and 53 mol%. The
major quinone is ubiquinone-8. The major polar lipids
consist of diphosphatidylglycerol, phosphatidylglycerol and
phosphatidylethanolamine. The major cellular fatty acids
are C16 : 1v7c and/or iso-C15 : 0 2-OH, C16 : 0 and C18 : 1v7c.
The rest of the description is identical to that mentioned by
Du et al. (2009). The type species is Gilvimarinus chinensis.

Description of Gilvimarinus polysaccharolyticus
sp. nov.

Gilvimarinus polysaccharolyticus (po.ly.sac.cha.ro.ly9ti.cus.
Gr. adj. polus many; Gr. n. saccharon sugar; N.L. masc. adj.
lyticus from Gr. adj. lutikos -ê -on able to loosen, able to
dissolve; N.L. masc. adj. polysaccharolyticus pertaining to
the ability to hydrolyse polysaccharides).

Cells are rod-shaped (0.4–1.0 mm in width and 1.0–3.0 mm
in length) under optimal growth conditions and Gram-
stain-negative. Colonies are pale yellow, circular, slightly
centrally sunken after 2 days of incubation at 28 uC on
MA. Cells are motile with a single polar flagellum. Growth
occurs at 4–32 uC with optimum temperature at 28–30 uC
and pH 5.0–10.0 with the optimum at pH 7.0. Growth
occurs in the presence of 0–9.0 % (w/v) NaCl with
optimum NaCl concentrations of 1.0–3.0 %. Catalase-
and oxidase-positive. Cells hydrolyse agar, DNA, starch
and xylan, but not casein, chitosan, gelatin, L-tyrosine or
Tweens 20, 40, 60 and 80. In API 20 NE tests, cells are
positive for nitrate reduction and aesculin hydrolysis
but negative for L-arginine, urea and 4-nitrophenyl
b-D-galactopyranoside hydrolysis, indole production and
D-glucose fermentation. In API ZYM tests, N-acetyl-b-
glucosaminidase, acid phosphate, alkaline phosphatase,
esterase (C4) and leucine arylamidase are positive; weakly
positive activity is shown for a-glucosidase, b-glucosidase,

lipase (C14), naphthol-AS-BI-phosphohydrolase and valine
arylamidase, while a-chymotrypsin, cystine arylamidase,
esterase lipase (C8), b-fucosidase, a-galactosidase, b-
galactosidase, b-glucuronidase, a-mannosidase and trypsin
are negative. In GN2 MicroPlates, cellobiose, maltose,
monomethyl succinate, and Tween 80 are utilized, and the
following substrates are weakly utilized: a-cyclodextrin,
dextrin, glycogen, D-galactose, gentiobiose, D-mannose,
methyl b-D-glucoside. Growth is not observed on N-acetyl-
D-galactosamine, N-acetyl-D-glucosamine, adonitol, L-
arabinose, D-arabitol, i-erythritol, D-fructose, L-fucose,
a-D-glucose, myo-inositol, a-lactose, lactulose, D-mannitol,
melibiose, D-psicose, raffinose, L-rhamnose, D-sorbitol,
sucrose, trehalose, turanose, xylitol, methyl pyruvate, acetic
acid, cis-aconitic acid, citric acid, formic acid, D-galactonic
acid lactone, D-galacturonic acid, D-gluconic acid, D-
glucosaminic acid, D-glucuronic acid, a-hydroxybutyric
acid, b-hydroxybutyric acid, c-hydroxybutyric acid, p-
hydroxyphenylacetic acid, itaconic acid, a-ketobutyric
acid, a-ketoglutaric acid, a-ketovaleric acid, DL-lactic acid,
malonic acid, propionic acid, quinic acid, D-saccharic acid,
sebacic acid, succinic acid, bromosuccinic acid, succinamic
acid, glucuronamide, L-alaninamide, D-alanine, L-alanine,
L-alanyl-glycine, L-asparagine, L-aspartic acid, L-glutamic
acid, glycyl-L-aspartic acid, glycyl-L-glutamic acid, L-
histidine, hydroxy-L-proline, L-leucine, L-ornithine, L-
phenylalanine, L-proline, L-pyroglutamic acid, D-serine,
L-serine, L-threonine, DL-carnitine, c-aminobutyric acid,
urocanic acid, inosine, uridine, thymidine, phenylethyla-
mine, putrescine, 2-aminoethanol, 2,3-butanediol, glycerol,
DL-a-glycerol phosphate, glucose 1-phosphate or glucose 6-
phosphate. In API 50 CH assays, acid is produced from D-
xylose, methyl b-D-xylopyranoside, D-galactose, D-glucose,
D-fructose, D-mannose, methyl a-D-glucopyranoside, N-
acetylglucosamine, amygdalin, arbutin, aesculin (Fe3+),
salicin, cellobiose, maltose, lactose, starch, glycogen,

DPG

(a) (b) (c)
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DPG GL1
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S
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Fig. 2. Two-dimensional TLC of phospholipids and glycolipids of strain YN3T and reference strains. (a) Strain YN3T; (b) G.

chinensis QM42T; (c) ‘G. agarilyticus’ KCTC 23325. The plates were sprayed with 0.5 % 1-naphthol in methanol/water (1 : 1,
v/v) and then sulfuric acid/ethanol (1 : 1, v/v) (Xin et al., 2000). DPG, diphosphatidylglycerol; PG, phosphatidylglycerol;
PE, phosphatidylethanolamine; GL1–GL5, unknown glycolipid. All data were from this study.
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gentiobiose, potassium 2-ketogluconate and potassium 5-
ketogluconate. However, acid is weakly produced from
glycerol, L-xylose, melibiose and trehalose, but not from
erythritol, D-arabinose, L-arabinose, D-ribose, D-adonitol,
L-sorbose, L-rhamnose, dulcitol, inositol, D-mannitol, D-
sorbitol, methyl a-D-mannopyranoside, sucrose, inulin,
melezitose, raffinose, xylitol, turanose, D-lyxose, D-tagatose,
D-fucose, L-fucose, D-arabitol, L-arabitol or potassium
gluconate. Sensitive to amikacin, amoxicillin, ampicillin,
carbenicillin, chloramphenicol, ciprofloxacin hydrochloride,
erythromycin, gentamicin, kanamycin, nalidixic acid, neo-
mycin, norfloxacin, novobiocin, polymyxin B, streptomycin,
sulfafurazole, sulfamethoxazole, tetracycline, trimethoprim
and vancomycin, but resistant to lincomycin, O/129 and
penicillin G. The major cellular fatty acids (.10 %) include
C16 : 1v7c and/or iso-C15 : 0 2-OH, C16 : 0 and C18 : 1v7c. The
predominant respiratory quinone is ubiquinone-8. The
main polar lipids are diphosphatidylglycerol, phosphatidyl-
glycerol and phosphatidylethanolamine, and two uniden-
tified glycolipids.

The type strain, YN3T (5KCTC 32438T5JCM 19198T),
was isolated from a seaweed sample taken from the coast
of Weihai, China. The genomic DNA G+C content is
49.4 mol% (determined by whole genome sequencing).
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