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Microbulbifer elongatus strain HZ11, was a new strain ofM. elongatesDSM 6810T, which has the ability to degrade
brown seaweeds such as Laminaria japonica into single cell detritus particles. Here we report a high quality draft
genome ofM. elongatus strain HZ11, which comprises 4,223,108 bp in 9 contigswith the G+C content of 56.70%.
A total of 3293 protein-coding sequenceswere predicted, including nine alginate lyases (EC 4.2.2.3), five agarases
(EC 3.2.1.81), 2-dehydro-3-deoxygluconate kinase (EC 2.7.1.45) and all enzymes involved in the Entner–
Doudoroff pathway. Our results suggest that strain HZ11 has the potential ability to produce bioethanol from
alginate with moderate genetic modification, which may significantly increase the yield of bioethanol from
brown seaweed and the utilization rate of brown seaweeds.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In East-Asia, brown seaweeds such as Laminaria japonica, Undaria
pinnatifida and Ecklonia kurome have been traditional resources of
foods or medicines for a long time. In the modern day, the brown sea-
weeds can also be an appropriate feedstock for bioconversion into
bioethanol (John et al., 2011). Microbulbifer elongatus strain HZ11 was
isolated from seawater of Zhoushan Islands of the East China Sea by di-
rection isolation of the brown seaweed-degrading strain. With the se-
cretion of many polysaccharidases such as alginate lyase, cellulose and
amylase, strain HZ11 can degrade seaweed such as L. japonica into par-
ticles whose particle-size are less than 10 μm. For further research of
brown seaweed saccharification and fermentation of bioethanol, we
have determined the genome sequence of M. elongatus strain HZ11
(=CGMCC 6242).

M. elongatusHZ11 was cultivated on modified 2216medium, which
contains (per liter distilled water): yeast extract 5 g, peptone 1 g, ferric
citrate 0.1 g, NaCl 19.45 g, MgCl2 · 6H2O 8.8 g, CaCl2 · 2H2O 1.8 g, KCl
0.55 g, NaHCO3 0.16 g, Na2SO4 3.24 g, KBr 0.08 g, SrCl2 34 mg, H3BO4

22 mg, NaSiO4 4 mg, NaF 2.4 mg, NH4NO3 1.6 mg, Na2HPO4 8 mg,
pH 7.4 adjustedwithNaOH, at 28 °C for 24 h. Genomic DNAwas extract-
ed using the method described by Marmur and Doty (1962). The ge-
nome was sequenced using paired-end sequencing technology (HiSeq
2000 system, Illumina, USA) (Bentley et al., 2008). The shotgun library
was constructed with a 500 bp-span and a 2000 bp-span paired-end li-
brary. All clean reads were assembled into 19 scaffolds using the
SOAPdenovo v.1.05 assembler (Li et al., 2010). After manual gap-filling
steps and mapping to reference sequences, a high quality draft genome
sequence with 9 contigs was obtained for further analysis.

Gene prediction was performed using Glimmer v. 3.02 (Delcher
et al., 2007), and functions of the gene products were annotated by
BLAST + (Camacho et al., 2009) using NCBI-nr protein (Sayers et al.,
2012) and Swiss-Prot databases (Bairoch et al., 2004). The rRNA and
tRNA genes were identified by using RNAmmer (Lagesen et al., 2007),
tRNAscan-SE (Lowe and Eddy, 1997) and Rfam (Griffiths-Jones et al.,
2003) database. Classification of predicted genes and pathways were
analyzed by using COGs (Tatusov et al., 2000, 2001) and KEGG
(Kanehisa and Goto, 2000) databases. The putative carbohydrate-
active enzymes were analyzed by using CAZy (Lombard et al., 2014)
and Pfam (Finn et al., 2014) databases.

The genome sequence of M. elongatus HZ11, with a genome size of
4,223,108 bp from 9 contigs, contains 56.70% G + C content. A total of
3293 coding sequences were predicted including 51 RNA genes and
904 hypothetical proteins.

The annotation results of genome suggest that strain HZ11 has large
amount of genes related to brown seaweed degradation and polysac-
charide utilization. As reported, brown seaweed is composed of several
polysaccharides including alginate, laminarin, fucoidan and cellulose,
among which, alginate composes 30–60% of the total sugars in brown
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seaweed (Chapman, 1970). In the protein-coding genes of strain HZ11,
several genes encoding polysaccharidases relating to brown seaweed
degradation were found, including nine alginate lyases (EC 4.2.2.3),
one cellulase (EC 3.2.1.4) and two amylases (EC 3.2.1.1). Additionally,
five agarases (EC 3.2.1.81) were also found, which is consistent to the
phenotype of agar-liquefaction. Since agar is the typical component of
red seaweed, strain HZ11 might also be able to degrade red seaweeds.

The analysis results of putative carbohydrate-active enzymes suggest
that all nine putative alginate lyases (Alys) belong to four different poly-
saccharide lyases (PL) families. Five Alys are classified into PL7 family,
where known activities are alginate lyase (Aly, EC 4.2.2.3) and G-
specific alginate lyase (AlyG, EC 4.2.2.11); two Alys are classified into
PL6 family, in which known activities are Aly and MG-specific alginate
lyase (AlyMG, EC 4.2.2.−). In the PL6 family, only two Alys (Aly Q06365
and AlyMG AFC88009) were characterized, which have a mass of
44.5 kDa and 49.9 kDa respectively (Maki et al., 1993; Lee et al., 2012);
one Aly is classified into PL17 family, which comprises Aly and
oligoalginate lyase (Oal, EC 4.2.2.−). Currently, three-fourths of character-
ized Alys in PL17 familywere Oals; the last Aly is classified into PL18 fam-
ily that was known as Aly, AlyG and AlyMG. The neighbor-joining tree
(a)

Fig. 1. (a) Neighbor-joining tree using the Jones–Taylor–Thornton (JTT) model based on the am
Microbulbifer elongatus strain HZ11 and other bacterial characterized alginate lyases which be
values are based on 500 replicates; values ≥50% are shown. (b) Bacterial fermentation pathw
alcohol dehydrogenase; Aly: alginate lyase; GPD: glucose-6-phosphate 1-dehydrogenase; GNP
2-dehydro-3-deoxyphosphogluconate aldolase; PDC: pyruvate decarboxylase; PGL: 6-phosphog
acid; GAP: 3-phosphate-glyceraldehyde; KDG: 2-keto-3-deoxy-gluconate; KDPG: 2-dehydro/k
constructed by the amino acid sequences of alginate lyases also shows
the same results (Fig. 1a). All five putative agarases (Agas) are classified
into three different glycoside hydrolase (GH) families including GH16,
GH86 andGH50. TwoAgas are classified toGH50 family. In this family, al-
most all members are neoagarotetraose-producing Agas, which suggest
that these two Agas may be neoagarotetraose-producing Agas. Addition-
ally, three types of carbohydrate-binding modules (CBM) are found
which may promote the association of the enzyme with the substrate
(Boraston et al., 2004). In detail, CBM32 (or F5/8 type C domain) is related
to someAlys in PL7 family; CBM16 (or CBM_4_9) is related toAlys in PL18
and PL6 families; CBM6 is related to Agas in GH16 and GH86 families.

Interestingly, our analysis also reveals that strain HZ11 contains
all genes encoding the enzymes involved in the Entner–Doudoroff
(ED) pathway, including glucose-6-phosphate 1-dehydrogenase (EC
1.1.1.49), 6-phosphogluconolactonase (EC 3.1.1.31), phosphogluconate
dehydratase (EC 4.2.1.12), 2-dehydro-3-deoxyphosphogluconate aldol-
ase (EC 4.1.2.14), pyruvate decarboxylase (EC 1.2.4.1) and alcohol
dehydrogenase (EC 1.1.1.1), which imply the complete ED pathway is
considered to exist (Conway, 1992). Moreover, the gene encoding
2-dehydro-3-deoxygluconate kinase (EC 2.7.1.45) was found, which
ino acid sequences of alginate lyases, showing the relationship between alginate lyases in
long to PL5, PL6, PL7, PL15, PL17 and PL18 families (based on CAZy database). Bootstrap
ay of abundant fermentable components in brown seaweed and relevant enzymes. ADH:
D: phosphogluconate dehydratase; KDGK: 2-dehydro-3-deoxygluconate kinase; KDPGA:
luconolactonase; Oal: oligoalginate lyase;DEHU: 4-deoxy-L-erythro-5-hexoseulose uronic
eto-3-deoxy-phosphogluconate.
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Fig. 1 (continued).
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plays an important role in the connection of alginate depolymerization
and ED pathway (Fig. 1b, Preiss and Ashwell, 1962a,b). Based on the
analysis, strain HZ11 has the potential ability to produce bioethanol di-
rectly from alginate by ED pathwaywithmoderate geneticmodification
such as delete pflB-focA, frdABCD, and ldhA from the genome to divert
carbon flux away from fermentative by-products (Wargacki et al.,
2012). Additionally, an engineered microbial platform and a synthetic
yeast platformwere reported as genetic modification strains to produce
ethanol from brown seaweeds by using the similar pathway above
(Wargacki et al., 2012; Enquist-Newman et al., 2014). Up to now,
most reported bioethanol transferred from brown seaweeds were pro-
duced from mannitol or glucan including cellulose and laminarin
(Yanagisawa et al., 2011; Lee et al., 2013; Wang et al., 2013). Hence,
by developing the fermentation of alginate which is the most abundant
component in brown seaweeds, strain HZ11 may significantly increase
the yield of bioethanol from brown seaweeds and the utilization rate
of brown seaweeds (Wargacki et al., 2012).

This Whole Genome Shotgun project of M. elongatus HZ11
(=CGMCC 6242) has been deposited at DDBJ/EMBL/GenBank database
under the accession JELR00000000.
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